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ERF = “Effective Radiative Forcing” ERF,., = difference in net top-of-atmosphere radiative downward
. ERF.. = “direct” effects from flux between two simulations, one with present-day (PD) and
Er,;j;r.;:ﬂ_radiaﬁﬂn interactions one with pre-industrial (Pl) aerosol emissions.
» ERF, = “indirect” effects from « Sea surface temperature fixed

aerosol-cloud interactions * Includes adjustments (temperatures, water vapor and clouds)
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Uncertainties in aerosol
effective radiative forcing
limit confidence in future
climate projections

The equilibrium climate sensitivity (ECS)
and the historical aerosol effective
radiative forcing (ERF_,,) are the two
main sources of uncertainty in future
climate projections (for a given
atmospheric composition pathway).

Constraints on both can be inferred from
the historical temperature record, but
these constraints are interdependent.

Watson-Parris and Smith,

Nature Climate Change, 2022
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The problem: bias in the mid-20t" century global mean temperature

Global surface air temperature anomaly (ref 1850-1899)
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Total Aerosol Effective Radiative Aerosol-radiation Aerosol-cloud
Forcing (ERF,,,) (1850 vs PD, fixed |interactions (ERF,,) interactions (ERF )
ssT) )

E3SMv1 1.64 0.04 .77

(£Lhang et al., 2022}

E3SMv2 1.33 0.04 -1.51

(Zhang et al., in prep)

E3SMv3 0.71 -0.03 0.77

(Burrows et al.; Xie et al.; in prep)

Multi-model range -1.01+ 0.23

(Smith et al., 2020) -1.37 — -0.63 (range)

Obs. constraints -1.6 —-0.6 (68%)

(Bellovin ot al, 2020, Smith ot af,  -2.0 — -0.4 (90%) —0.71 to —0.14 _2.65 to —0.07
2021) 11[1.8--0.5] (90%) (90%)

IPCC ARG 13[-2.0t0 -0.6] ~0.3[-0.6 to 0.0] 1.0 [-1.7 to -0.3]

(1750-2011)
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E3SMv2 aerosol efficacy is higher than many other models; this may
contribute slightly but is not a dominant effect

Efficacy of Climate Forcings (E.....)

« E3SMv2 all-aerosol efficacy of
~1.15 is within, but at the high

end of the range of PDRMIP
models
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E3SMv2 — Golaz et u_r 1.0

al. (2022) = 1.01

0.5

Johannes Mulmenstadt, Aishwarya Raman,
Susannah Burrows
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Sulfate aerosol column density and total burden
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hlgh bias In ¥ wet removal significantly reduced
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o thereby reduced the aerosol indirect
_ 30S ¢ forcing from 1.79 to 1.52 W/m2 in v3
Yunpeng Shan, Kai Zhang, 60S candidates (versus 1.51 W/m2 in v2).
Jiwen Fan 90S
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Aerosol effective radiative forcing (ERF_.,) at top-of-atmosphere
NC20 NO_NC20

Yunpeng Shan,
Jiwen Fan
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« Wet removal
updates reduce the
direct effect bias,
with minor impact
on overall ERF_,,
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ERF,q partitioning: warm cloud processes are consistent with multi-model range
Decomposition of SW ERF__ following Gryspeerdt et al. (2020)
® AeroCom + CMIP5
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Historical evolution of sulfate aerosol
agrees reasonably CMIP6 model
simulations of ice core data

Y1 (wetdep + drydep)
EE PTEﬂpice' +1ig

CMIP6 models including E35M significantly overestimate
sulfate concentrations at most sites, likely in part due to
unresolved topography.

conc =

CMIP& models including E3SM can capture the decadal trend
to some extent. E3SM has similar decadal trend as CMIP&

models.
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Obs and CMIP6 data from Moseid et al. (2022) JGR

Mingxuan Wu and Hailong Wang
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GSM ' PRELIMINARY attribution of ERF impacts from specific

s Model changes (Xle et al., in prep)

Model change F’n.allmlm':lr5|1r estimate of ERFHH impacts | Percentage of total change in ERFaer
from sensitivity tests (W m’ } (EAMv2 = EAMv3: +0.62W m ]

Increase in minCDNC limiter +0.25 40%

from 10 to 20 cm”™

2xDMS (with minCDNC=20 cm”) +0.12 19%

Retuning autoconversion Nd +0.10 16%

exponent from -1.4to-1.1"*

Reduction in BC aging +0.08 13%

monolayers from 8 to 3 *

Increased hygroscopicity of +0.08 13%

POM *

Wet removal modifications * +0.04 6%

Residual term -0.05 -8%

Results are based on sensitivity tests with final EAMv3 or near-final (*) EAMv3 versions.
Not shown (but may be added for final publication):
= Significant, but largely offsetting changes from the update from MG2 to P3 and inclusion of convective microphysics.
« |mpacts of new aerosol features. Net impact on ERFaer is small, but the new SOA feature reduces both ERF, and
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Why does increasing
background N, weaken
ERF

aci *

Physical saturation effects in several
aerosol-cloud processes lead to sublinear
responses:

1. Formation of aerosols and cloud
condensation nuclei (CCN) from gaseous
precursors

2. Activation of CCN to form cloud droplets
3. Increases in cloud albedo with
iIncreased cloud droplet number
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Burrows et al. (in prep; E3SMv3 calibration)

The 80-20 rule in action: Beydoun et al. (2023; E3SMv2 PD-PI AOD)
Large sensitivity to natural background aerosol (DMS)
and min. cloud droplet number concentration (minCDNC)

v3 . e et
= e / » Enhanced aerosol and cloud processes
o i - while achieving coupled tuning targets
T
T:; : ‘_,.’ V2 '_#_..- H i '?
S Right answer for the right reasons”
'*\H MInCONC (#/cm?) More work is needed to elucidate and address
/ = ‘:D (1) background preindustrial aerosol sources, and
. . 20 (2) the structural causes of low N
i s i --I
DMS scaling e
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Sensitivity to DMS flux, minCDNCis

. Direct ACI effect -0
driven by the Twomey effect * (Twomey effect) i
At very high values of DMS scaling, Twomey effect becomes B = o =
inconsistent with assessed range (pink), CMIP models (black dots). * il
« Cloud fraction adjustment is currently poorly constrained. ;;
¥
» Liguid water path adjustment remains inconsistent with the assessed '
range in all sensitivity cases.
N i e e
28 : Bt
o4 Cloud fraction Liquid water path
' adjustment : adjustment
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Benchmarking against in situ observations (SOCRATES)

Aerosol number concentrations

Accumulation mode Coarse mode
a0 297-45 latitude _,  50f-45 latitude o _
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Having the right (process-
relevant) diagnostics is
essential: Sulfate mass
concentrations from
ground-based networks are
insensitive to 2x DMS.

Minimal response to 2xDMS,
even at marine sites

=» Need operational
diagnostics for Southern
Ocean aerosol

Mingxuan Wu, Hailong Wang
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—— E3S5Mv1
E3SMv2
—— [E3SMv3

E3SM's simulation —— HadCRUTS-Analysis

of the historical
temperature record

IS significantly
improved in v3 with

reduced ERF,,,

1860 1880 1900 1920 1940 1960 1980 2000
Year

Figure courtesy of E3SM coupled group: Wuyin Lin,

Xue Zheng, Chris Golaz, et al.

E3SMv3.0.0 : ERF,,, = -0.75 W/m?
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The hemispheric temperature gradient now also agrees
well with the observational record

5H surface temperature anomaly (ref 1850-1899) Global surface temperature anomaly (ref 1850-1899)
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E3SMv3 ensemble extended with SSP245.
SSP245 is the medium pathway of “future” emissions, which extrapolates past and current global

development into the future, with an additional radiative forcing of 4.5 W/m? by the year 2100. —
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Lessons for other bias reduction efforts — which
strategies supported our success?

« A strong and committed team examining the issues from multiple perspectives
» Contributions from process experts (clouds, aerosol, aerosol-cloud interactions)
» Single working group lead (to coordinate & prioritize)

Clear definition of the goal with objective metrics

Coordination of priorities across groups and teams

« Coupled group: coupled tuning priorities

« v3 atmosphere integration team: climate mean state and variability
Clear identification of hypotheses to explain biases

» Pareto Principle: 20% of the effort yields 80% of the results

Robust diagnostic tools and workflows
» Enables rapid iteration and intercomparison of proposed solutions and hypotheses
» Having the right diagnostics is essential

More work is needed to elucidate and address
» (1) background preindustrial aerosol sources, and
* (2) the structural causes of low N,
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