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Global models have had a rough decade

▶ Cloud physics uncertainties are large
contributors to aerosol forcing and
climate sensitivity uncertainties

▶ GCMs have very biased cloud physics,
which has caused them to be given little
weight in assessments of global mean
climate responses (ERF and ECS)

▶ But discarding global models is a waste
of a line of evidence that could be
cross-checking the others

▶ And how do we answer questions
society cares about if we don’t have a
modeling system that can represent
scales from cloud processes to the
global circulation?

Boucher et al. (2014); Sherwood et al. (2020); Bellouin et al. (2020)
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Effective radiative forcing by aerosol–cloud interactions (ERFaci)

ERFaci = FNd + FL + Ffc =

(
∂R

∂ logNd
+

∂R
∂ logL

d logL
d logNd

+
∂R
∂fc

dfc
d logNd

)
∆ logNd (1)

Quaas et al. (2008); Boucher et al. (2014); Bellouin et al. (2020)
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The “inverted v” in Nd–L space: a tale of two slopes
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Interpretation: precip suppression at low Nd (Albrecht, 1989), enhanced evaporation at
high Nd (Ackerman et al., 2004; Bretherton et al., 2007); partial cancellation, but
evaporation wins

Gryspeerdt et al. (2019)
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Process fingerprints in Nd–L space
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There’s no “v” in “GCM”
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This is what we should expect, based on process scales

By this argument, all global models are in trouble!

Wood (2012); Michibata et al. (2016); Zhou and Penner (2017); Sato et al. (2018); Terai et al. (2020)
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CMIP5 −→ CMIP6: several models now have an inverted v!
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Is the Nd–L relationship causal?

No!

SURELY

LPD < LPI

CORRELATION

IS NOT

CAUSATION!
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GCM L adjustment is still the opposite of the other lines of evidence
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What confounds the Nd–L relationship?

Regimes? Process dependence on base state? Thence, parameters?
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What confounds the Nd–L relationship?

Artifacts?
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What confounds the Nd–L relationship?

Scales?
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Weave lines of evidence into a tight net for this multiscale problem

Atmos. Chem. Phys., 24, 7331–7345, 2024
https://doi.org/10.5194/acp-24-7331-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
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Abstract. General circulation models’ (GCMs) estimates of the liquid water path adjustment to anthropogenic
aerosol emissions differ in sign from other lines of evidence. This reduces confidence in estimates of the effec-
tive radiative forcing of the climate by aerosol–cloud interactions (ERFaci). The discrepancy is thought to stem
in part from GCMs’ inability to represent the turbulence–microphysics interactions in cloud-top entrainment, a
mechanism that leads to a reduction in liquid water in response to an anthropogenic increase in aerosols. In the
real atmosphere, enhanced cloud-top entrainment is thought to be the dominant adjustment mechanism for liq-
uid water path, weakening the overall ERFaci. We show that the latest generation of GCMs includes models that
produce a negative correlation between the present-day cloud droplet number and liquid water path, a key piece
of observational evidence supporting liquid water path reduction by anthropogenic aerosols and one that earlier-
generation GCMs could not reproduce. However, even in GCMs with this negative correlation, the increase in
anthropogenic aerosols from preindustrial to present-day values still leads to an increase in the simulated liquid
water path due to the parameterized precipitation suppression mechanism. This adds to the evidence that corre-
lations in the present-day climate are not necessarily causal. We investigate sources of confounding to explain
the noncausal correlation between liquid water path and droplet number. These results are a reminder that as-
sessments of climate parameters based on multiple lines of evidence must carefully consider the complementary
strengths of different lines when the lines disagree.

Published by Copernicus Publications on behalf of the European Geosciences Union.

▶ GCMs can reproduce the
observed negative
correlation between Nd
andL, but they still
produce higher L in PD
than PI

▶ Why this disagreement in
sign? Points to a
covariation rather than
causal relationship
between Nd and L

▶ We need to be really
careful about interpreting
PD variability as a proxy
for secular change
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The puzzle only comes together if all the pieces are right

Obs
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Does aerosol make clouds darker or brighter?

Actual PI−→PD cloud albedo change:

+3%

Zhang and Feingold (2023)

; Mahfouz et al. (2024)
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Diagnosing the entrainment process – in a well studied LES case
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Diagnosing the entrainment process – in a well studied LES case
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Diagnosing the entrainment process – in a well studied LES case
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Diagnosing the entrainment process – in a well studied LES case
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Diagnosing the entrainment process – in stratocumulus diversity
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Enhanced entrainment begets its own demise (buffering)

0.1

0.2

0.3

0 5 × 107 108 1.5 × 108 2 × 108 2.5 × 108

L
(k

g
m

−
2
)

0.0000

0.0025

0.0050

0.0075

0.0100
E (kg m−2 s−1)

0.003

0.004

0.005

0 5 × 107 108 1.5 × 108 2 × 108 2.5 × 108

Nd (in cloud, m−3)

E
(k

g
m

−
2

s−
1
)

Mülmenstädt et al. (revised)
22 / 23



Global models provide a crosscheck on observations, LES

▶ Present-day correlation is not
climatological causation

▶ Well studied LES cases may
not represent the entire
diversity even of subtropical
subsidence stratocumulus

▶ Climate is the mother of all
multiscale problems – we need
a multiscale way of
understanding its behavior

See also: Goren et al. (2024); Mülmenstädt and Wilcox (2021)
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