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The physical process of urbanization

= Replacement of natural land surfaces with built-up structures

Source: NASA and USGS
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The physical process of urbanization

= Replacement of natural land surfaces with built-up structures

= Broadly, any change in natural land cover due to urban planning (e.g. addition of urban
green spaces and transition from native to non-native vegetation), constitutes
urbanization
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Rapid historical urban expansion

Countries with the highest built-up area 1992
Area (in sg. km) Urban areaS have grown
0 50,000 100,000 o
T R =Y ' the et
b o few decades
China
34,132

Russia
18,607

Germany
13,351

Brazil
13,092

Japan
12,120

Ukraine
10,340

Indonesia
9,413

United Kingdom
8,913

France
8,752




Urban impacts on weather and climate

Increase in urban extent +
changes in surface properties + = Impacts on weather and climate
anthropogenic activities

Modified from Qian, Chakraborty et al., 2022



Urban impacts on weather and climate
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Urban representation in Earth system models

Mostly slabs or no urban

= Urban areas are rarely represented in
global models

= We assume that urban land fraction is
small and won’t impact broader climate

= The few global models with urban
representation are too simple

Hertwig et al., 2020



Urban representation in E3SM

Urban canopy structure in E3SM

Mostly slabs or no urban

= Urban areas are rarely represented in
global models

= We assume that urban land fraction is
small and won’t impact broader climate

= The few global models with urban
representation are too simple

E3SM: DOE’s Energy Exascale

Earth System Model

Hertwig et al., 2020 Modified from Ching et al., 2014
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Poor surface constraints for urban areas

= |n E3SM, the world is divided
into 33 regions, each with
unique values for urban
radiative, thermal, and
morphological parameters




Poor surface constraints for urban areas
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No vegetation within urban areas

Urban canopy structure in E3SM
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No vegetation within urban areas

Urban canopy structure in E3SM
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No vegetation within urban areas

Urban canopy structure in E3SM Real cities?
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Importance of urban vegetation

= Urban vegetation modifies weather and climate

= Urban and rural vegetation are not identical, both in amount and properties
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Importance of urban vegetation

= Urban vegetation modifies weather and climate

= Urban and rural vegetation are not identical, both in amount and properties
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Static urban representation in E3SM
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Sos = Static for historical and future simulations

MODIS ESACCI GISA CGLS WSF Esri ESA  Dynamic Jackson Demuzere
Land Land Land 2019 Land WorldCover World el al. el al.
Cover Cover Cover Cover (2010) (2022)

Chakraborty et al., Under Review



Static urban representation in E3SM
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Current urban extent in E3SM Land Model
(ELM) is based on a circa 2001 dataset

Uses population-based urban definitions

Low density class data are not used

Static for historical and future simulations
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Static urban representation in E3SM
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= Significant future urban expansion

= Large uncertainties across datasets

= Urban properties will also change

Urban Evolution = Urban expansion +

change in urban properties over time
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Resolving coastal processes?
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= Majority of global urban population
lives in coastal cities

= Urban-coastal interactions are complex

= Large spatial gradients expected along
coastlines, as well as hard-to-simulate
extreme weather phenomena

Chakraborty et al., 2023



Resolving coastal processes?
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= For coastal cities, spatial variability of |
surface properties not represented

Mean air temperature for Connecticut:
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= Model does not care where urban
area is within grid

Chakraborty et al., 2023
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New urban parameterization for E3SM

Objective 1: Develop a new urban = Explicitly representing urban vegetation and its
parameterization for E3SM interactions with climate

= Global spatially continuous urban surface dataset
Cool || Green

Interactions of buildings
and urban vegetation
with surface energy
budget

Pervious Impervious




Generating a global 1 km urban dataset

= Leverage and develop high resolution satellite-
derived global products

o .

Wu et al., In Prep



Generating a global 1 km urban dataset
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= Leverage and develop high resolution satellite-
derived global products

Wu et al., In Prep



Generating a global 1 km urban dataset

=

- “" TSR s T e e e e 1 S e
o die o W PSR B

= Leverage and develop high resolution satellite-
derived global products

= Combine products with building and road datasets

= Extract roof, wall, and road parameters for all 1 km e
urban pixel in the world Y

Wu et al., In Prep Source: Microsoft



Some initial results

E3SM urban surface constraints
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Some initial results

E3SM urban surface constraints

Radiative

Morphological

Thermal

Chengetal., In Prep
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Some initial results

Radiative

Morphological

Thermal

E3SM urban surface constraints
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Examining urban evolution and its impacts

Obijective 2: Isolate the role of urban evolution on
surface climate from continental to coastal scales

Generate spatiotemporally varying
estimates of urban evolution

Develop high resolution forcing over
coastal areas across scenarios (historical
to future climate projections)

Land only simulations to examine urban
impacts on surface climate across scales




Developing temporally varying urban parameters
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Developing temporally varying urban

parameters
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Developing temporally varying urban parameters
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Downscaled forcing datasets along U.S. coastline

1X64x64 64x64X64 64x128x128 64x128x128 64x128x128  1x128x128 - 1x128x128

e

Conv
RelLU
TransConv
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ResBlock
Conv
Conv

Constraining

= Physics-constrained convolutional neural networks to capture coastal gradients

= Constrained by mass and energy budget of the entire grid (based on coarser future
climate projections)

Harder et al., Under Review



Examining feedbacks and studying extreme events

Obijective 3: Examine urban feedbacks to
the atmosphere and their impacts on U.S.
coastal weather extremes

Urban state o

Past
B Added between past and present
B Expected to be added in the future

= Examining feedback from CONUS to
coastal scales

= Urban impacts on coastal weather
extremes



Running E3SM with regionally refined grids at 1 km

Regionally refined Simple Cloud-
Resolving E3SM Atmosphere Model
(SCREAM) at ~3.25 km resolution

Liu et al., 2023



Running E3SM with regionally refined grids at 1 km

- ——
Relative Humidity (%) =~ A

" |solate specific extreme events from coarser
Regionally refined Simple Cloud- coupled simulations (drought, heatwave, storms)

Resolving E3SM Atmosphere Model | = Run perturbation simulations with different
(SCREAM) at ~3.25 km resolution urban scenarios

Liu et al., 2023 Chakraborty et al., In Prep




Multiple critical
collaborations across
labs, other
institutions, and
countries

Overall schematic of
proposed research

Integration with other

A%

DOE-funded projects

Thank you!

Objective 1: Develop a new urban
parameterization for E3SM

Data sharing & model
benchmarking
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Objective 2: Isolate the role of urban evolution on
surface climate from continental to coastal scales
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Objective 3: Examine urban feedbacks to
the atmosphere and their impacts on U.S.
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