Human-Earth feedbacks with E3SM-GCAM

E3SM-GCAM is a novel system

- More efficient updating of code
- Easier addition of passed variables
- Easier integration with multiple components

Current state:

- Rebased to E3SMv2 (May 2022 master)
 - Considering rebasing to E3SMv2.1 release
- Updated to GCAM 6
- Documentation on confluence (HES)

<u>GCAM</u>: Global Change Analysis Model, US Department of Energy E3SM: Energy Exascale Earth System Model, US Department of Energy

Current status

Land feedbacks are working correctly!

 Both agriculture yield and potential carbon density are scaled in GCAM (5year intervals)

Ongoing development:

- CO₂ coupling
 - Updating atmosphere configuration
 - Distributing CO₂ to atmosphere
 - Separating surface, international shipping, and aircraft sectors for downscaling
- ELM EHC resolution mismatch
 - No mismatch with 0.9x1.25 land

The E3SM human component is the EHC

Configuring/running E3SM-GCAM

Workflow

- 1. Determine scenario
 - a. SSP-RCP
 - b. Emissions (net-zero, NDCs)
 - a. Needs Bioenergy with CCS
 - c. Land carbon value (net-zero?)
- 2. Configure and run GCAM
- 3. Process GCAM outputs
 - a. Downscale emissions
 - b. Get carbon price path (RCP only)
- 4. Specify scenario in E3SM
 - a. GCAM configuration
 - b. Non-CO₂ emissions (and CO₂?)
 - c. Carbon price path (RCP only)
- 5. Run E3SM-GCAM

GCAM available land as percent of unmanaged grassland, shrubland, and forest

GCAM land units (shading) are the intersection of 235 water basins and 32 regions (black lines)

Configuring/running E3SM-GCAM

Boolean EHC namelist items

- run_gcam should always be true
- gcam_spinup
- ehc_elm_co2_emissions
- elm_ehc_agyield_scaling
- elm_ehc_carbon_scaling
- read_scalars no calculation if true
- write_scalars disabled if read_scalars is true
- write_co2 diagnostic

Key E3SM-GCAM run options

- Terrestrial productivity feedbacks
 - Agricultural yield scaling
 - Potential carbon density scaling
 - Matters only for scenarios where carbon is valued in the landscape
 - Feedbacks can be calculated and written to a file even if GCAM is not using them
 - Feedbacks can be read from a file generated by a previous run
- CO₂ emissions feed-forward

ELM-GCAM Example

This is not a scientifically valid configuration; it is just to test functionality

<u>GCAM</u>

- SSP2 socio-economics
- RCP2.6 carbon price path
- Full carbon price applies to land

ELM-EHC

- RCP4.5 data atmosphere
- Ag yield and carbon scaling on
- ELM grid: 1.9x2.5
- EHC grid: 0.9x1.25
- ELM initial conditions generated by ELM-GCAM run with 1948-1972 atmosphere

Terrestrial feedbacks generate a different scenario

Terrestrial feedbacks generate a different scenario,

but global CO₂ emissions change little

<u>More cropland is needed with feedbacks because</u> <u>crops are less productive with feedbacks</u>

Global crop vegetation scalars

land_type

- 🔶 biomassGrass 🛛 🛨 O
- ▲ biomassTree
- + CornC4
- ★ FiberCrop
- ↔ FodderGrass
- ✓ FodderHerb
- ✤ FodderHerbC4
- \star Fruits
- ✤ FruitsTree
- Legumes
- ✤ MiscCrop
- MiscCropTree
- NutsSeeds
- NutsSeedsTree

- OilCrop
- OilCropTree
- OilPalmTree
- OtherArableLand
- OtherGrain
- OtherGrainC4
- Rice
- RootTuber
- ↔ Soybean
- 📥 SugarCrop
- - Vegetables
- Wheat

2015 is 2 degrees warmer than 2014

Good cropland fidelity between GCAM and ELM

Land cover change is not consistent across models

14

Thousand km²

Land cover change is not consistent across models

- Not a new problem
- Directly influences carbon results

GCAM6

- Much less reliance on afforestation
- More reliance on other technologies
- Adjusting land conversion assumptions to better match GCAM requires:
 - Running with valid scenario
 - Running with different scenarios
 - Assuming similar conversion will apply to other scenario sources

Shift due to feedbacks is apparent in land use outputs

<u>Global terrestrial ecosystem responds to the altered scenario</u> <u>– but there is a 2015 singularity due to climate</u>

- Long-term convergence is due to veg C, likely due to forest (and shrub) area inconsistencies with GCAM
- Other variables (e.g., nutrients, water, ET) are also affected

<u>High fire loss contributes to the rapid carbon loss due to climate</u> singularity

Regional differences are more pronounced than global

TOTVEGC ANN global 60.03 Max 20231010 zlnd gcam6 SSP2 (2085-2095) kgC/m^2 This is likely to hold for 4.15 Mean 90°N Min 0.00 atmospheric variables also 60°N 30°N 25.13 229.58 14.02 11.8.6 20 11.8.6 20 0 0 30°S SSP2 with carbon policy - SSP2 without carbon scalingm^2 Max 4.73 -0.13 Mean 90°N Min -11.4260°S 2.5 60°N 90°S -0°E 60°E 120°E 180° 120°W 60°W 0°W 0.0 30°N 60.23 Max 20230927_zlnd_gcam6_SSP2_no_carbon_scaling (2065-2075) kgC/m^2 -2.5 4.28 Mean 90°N Min 0.00 -5.060°N 30°S 39.13 36.5579.13 58.027529.68024 118520 11111 118520 -7.530°N 60°S -10.00 RMSE 0.71 90°S CORR 1.00 0°E 60°E 120°E 180° 120°W 60°W 0°W 30°S 60°S 90°S -

0°E

60°E

120°E

180°

120°W

60°W

0°W

Summary

- E3SM-GCAM is unique
- ELM-GCAM land coupling is complete
 - Both ag yield and potential carbon density are scaled in GCAM
- Both models are responding as expected given the configuration
- Land cover inconsistencies across models are affecting terrestrial carbon impacts of terrestrial feedback

Next steps

- Working on GCAM scenario configurations
- Working on overall E3SM-GCAM configuration (EAM-ELM-EHC)
 - Including grids and new spinup with prognostic atmosphere
- GMD paper
 - Defining configuration and simulations (E3SMv2.1?)
 - Obtaining existing SSP2-RCP4.5 configuration files
 - Completing atmosphere coupling
- Incorporate into E3SMv3!

Expect initial scaling values to be near 1

Expect initial scaling values to be near 1

Expect initial scaling values to be near 1

<u>E3SM</u>

Global non-crop vegetation scalars

land_type

- 🔶 Forest
- 📥 Grassland
- + Pasture
- ✤ ProtectedGrassland
- ProtectedShrubland
- ➡ ProtectedUnmanagedForest
- ProtectedUnmanagedPasture
- * Shrubland
- UnmanagedForest
- + UnmanagedPasture

Land cover is consistent across 2015

