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Motivation: Antarctic Ice Sheet is largest
uncertainty in future sea-level change
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Problem: Feedbacks and tipping points
in AlS processes and coupling

AIS contribution to SLR (m)
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FANSSIE Project Focus Areas

@ Coupling of climate and
Antarctic Ice Sheet in E3SM Marine Ice Cliff

Instability @

Marine Ice Sheet
Instability

lce-sheet dynamics and
fracture mechanics

Ice-shelf

hydrofracture Marine melting

regime shift

Probabilistic projections of the
Antarctic Ice Sheet

How will threshold processes linking the coupled ice sheet, ocean, and
atmosphere impact the contribution of the Antarctic Ice Sheet to sea-level
change in the coming decades and centuries?
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(1) Coupling AIS to E3SM: Ice-sheet/Ocean

Ocean Model domain advance

= |[n E3SM v1.2, MPAS-Ocean
supported circulation beneath ice
shelves, necessary to simulate ice-
shelf basal melting

= However, horizontal extent of ocean
domain is fixed

= As AlS evolves, ocean domain must
advance — major technical hurdle

Ice sheet Ice shelf

b Comeau et al. 2022

Ice sheet Ice shelf
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(1) Coupling AIS to E3SM: Ice-sheet/Ocean | uwm

a. Standard capabilities

Ocean model domain needs to Steeply sloped Temperature (°C)
. layers '
advance as ice-sheet retreats
N 0.0

Goals: thick (8
 active/inactive regions of mesh through of 103 Y — il

addition of thin film — e
e vertical coordinate improvements to avoid

steeply sloping layers b- Ne“(;rcizp:pt;i;:';z ; GL position

g

* higher-order pressure gradient calculation for calving front

Carolyn Begeman, Xylar Asay-Davis (LANL)
v GHRTG
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a. Standard capabilities

e (Ocean model domain needs to Steeply sloped Temperature (°C)
. layers '
advance as ice-sheet retreats
0.0
° . Minimum
Goa |S . thickness
 active/inactive regions of mesh through of 108 ///, — 10
addition of thin film 50
e vertical coordinate improvements to avoid
. b. New capabilities
steeply sloping layers = dpopﬁmize ¢ GL position
* higher-order pressure gradient calculation for calving front c
Initial geometry
60 . . . I s
. T ocean cavity open 0 9
Pr(_)gr_ess' _ * ow ice shelf : ocean | |, g v
Thln fllm Wettlng & Geometry after 1 month of ice shelft‘hinning ' | 10° § d
drying operational _« - : 0 5 2
Coordination s ' I ' &
with 1co y (km) Carolyn Begeman, Xylar Asay-Davis (LANL)
V NGR; '§

FANSSIE Overview w:%f

“ " 60’ 2
&{’.\L}M“n N 2 “



1) Coupling AlIS to E3SM: Ice-sheet/Ocean

Potential challenges with E3SM OMEGA transition

lce-sheet/ocean coupling requires ocean model features that are not standard for global ocean models.
ProSPect and FANSSIE have been significant investments in those developments for MPAS-Ocean.

* MPAS-Ocean and MALI coupled simulations are expected to begin this year, with coupling capability
already far along

* |ce shelf cavities and melt fluxes not planned for initial Omega release
* Wetting and Drying for ice-shelf cavities would come later yet

* Omega is only planning on limited eddy parameterizations but fully eddy parameterization
(GM+Redi) required to resolve the small eddies present in polar regions

We are coordinating with OMEGA and E3SM Polar teams, but additional resources may be required to:

" maintain an unsupported branch of E3SM with MPAS-Ocean’s ice-shelf capabilities to achieve
FANSSIE (and E3SM) science objectives.

= preserve these capabilities in E3SM through the ocean model transition.

. V SO i
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(1) Coupling AIS to E3SM: Ice-sheet/Ocean

Adding subglacial discharge to ocean

Subglacial discharge of
meltwater known to enhance
submarine melting in
Greenland, but typically
assumed to be negligble in
Antarctica

Used MALI’s subglacial
hydrology model to simulate
discharge around AIS
Subglacial discharge ~10% of
ice-shelf basal melt flux
Addition of this freshwater
flux to MPAS-Ocean to come

| o

calving

submarine

“ melt

subglacial
discharge

Modeled subglacial 4
discharge in MALI %

Courtney Shafer, University of Buffalo
(DOE Computational Science Graduate Fellow)

Alex Hager, LANL

LANL
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(1)Coupling AIS to E3SM: Ice-sheet/Surface climate =\

LANL
* Ice-shelf hydrofracture can occur when <0 «
firn becomes saturated with meltwater / -
* Goals: - P 7
* Improve and validate snow & firn Warner et . 2021

48201 02

. . Schneid .
physics in ELM e
 Connect firn water content in ELM to
. . 30 |
ice-shelf stress state in MALI
20 | >
Progress: Evaluated 5 reanalysis ol &
products against AlS & GIS firn CN7%
Coordination core records. Added ERAS as data T ﬁ"-’;ﬁ ) o
WIER E3SMPolar 1 ATV option in E3SM. St ERSE.  MRZ 8
Process Group . IMRZ}‘\ u" \ g | | -
0 5 ~46--15 20~.25.730 35 40 45°
FAI’]SS| E OVE rview Taylor diagram shows ERAS5 (ER5), MERRA2 (MR2)

agree best with GrIS, AIS SUMup data (dashed).



(1)Coupling AIS to E3SM: Ice-sheet/Surface climate =\

LANL

* |ce-shelf hydrofracture can occur when | =50 -
firn becomes saturated with meltwater /} Y
* Goals: D " ,v’”
* Improve and validate snow & firn Warneretal. 2021
phySiCS in ELM AAIS 1980-1989 SMB
* Connect firn water content in ELM to 5257/5@%35“55?@7"/“”

ice-shelf stress state in MALI

m/yr

Progress: 300-yr firn spin-up with

reanalysis climate forcing Referehce valtres:

produces AlS surface mass balance | E*A=1960+/-106 G/yr
L CESM2=2269+/-100 Gt/yr

similar to reference values Total 1980s SMB: 2295 Gt/year
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(2) Advanced Discretizations

Most MALI algorithms are first-order;
higher accuracy at reduced cost needed
Goals:
 High-order discretizations
* Lower-fidelity models

for cost savings
* |nitialization capabilities

FANSSIE Overview
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2) Advanced Discretizations |
UM
Most MALI algorithms are first-order; ghomodel. ~ Depthint model,
higher accuracy at reduced cost needed £5
Goals: &&@_ Y &
. High-order discretizations ~ Progress: depth-integrated
velocity solver 3x cheaper than % o perego (s WG

e |owe r-fidelity models 3d solver with similar accuracy
for cost savings
* |nitialization capabilities
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(2) Advanced Discretizations ant | TERSTZh

UM

Most MALI algorithms are first-order; kot e ot

higher accuracy at reduced cost needed

Goals:

 High-order discretizations

* Lower-fidelity models 3d solver with similar accuracy
for cost savings

* |nitialization capabilities

Progress: higher-order
advection and time-stepping
preserve sharp features in
ice thickness and damage

Trevor Hillebrand (LANL)
| e TR vﬁ*ﬁ"‘l‘\'v‘“‘ v > w “
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2) Advanced Discretizations

 Most MALI algorithms are first-order;
higher accuracy at reduced cost needed

e @Goals:

 High-order discretizations
* Lower-fidelity models

for cost savings

~* Initialization capabilities

-vanilla
—~improved

© 2000 4000 6000 8000 10000
# linear so lves

SNL
LANL = FASTMath
UM

FO model, Depth Int. model,

thickness [m]

thickness [m]

Progress: depth-integrated ,
velocity solver 3x cheaper than % =~
3d solver with similar accuracy

Simulated Thwaites Ice Shelf damage, 2050

Progress: higher-order
advection and time-stepping
preserve sharp features in
ice thickness and damage

Trevor Hillebrand (LANL)
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(2) Ice-shelf Fracture Mechanics

Existing fracture models use simple stress |

or strain rate based parameterizations

FANSSIE Overview
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2) Ice-shelf Fracture Mechanics o | TESTVET

LANL
. - . :::;;;IEF from E?A'ntinel-l (2016-2021)
Existing fracture models use simple stress [ 3 -
or strain rate based parameterizations [ @F ... Al
/\ WeskZone -5\ S8 ~ 400000 3
Goals: e N IR
* Utilize a damage state variable that: [k B
* triggers calving of failed ice — NI

* weakens ice viscosity

Progress: higher-order advection
and time-stepping preserve
sharp features in damage S
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(2) Ice-shelf Fracture Mechanics um

SNL FASTMath
LANL

Thwaites Glacier from ESA's Sentinel-1 (2016-2021)
- -4

o g . (2021-03-31 =
Existing fracture models use simple stress [z % @
or strain rate based parameterizations i “
Goals:
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(a) 0.0 years (b) 4.9 years

 Implement ductile+brittle methods émo —> . .
that can form rifts and tabular icebergs # «

(c) 19.7 years (d) 39.4 years

 Couple fracture and ice rheology ) )

Simulated evolution of rifts in an idealized ice shelf using prototype model.
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(2) Unstructured Mesh Adaptivity R et

Solution accuracy degrades at
calving front and rifts

Goals:
* Feature tracking with level-sets

* GPU-based mesh adaptivity using
Omega_h library

* Mesh node movements and swaps
to keep mesh aligned with key
features

FANSSIE Overview

SNL

discrete Original mesh

front

level-set
front

Adapted mesh

Mauro Perego (SNL), Cameron Smith (RPI)

Progress: Incorporated the Omega_h mesh
adaptivity library in MALI and implemented

operational testing
VNG i |
E&k.m g Nq"'ﬂf



2) MALI Performance I/mprovements

* New physics will impact performance
* QGoals:
e Algorithmic improvements to
oetter utilize GPUs
* Performance optimization using
oad balancing and autotuning
e Software modernization,
harmonization, and verification

FANSSIE Overview
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2) MALI Performance I/mprovements

SNL

LBNL RAPIDS2

* New physics will impact performance

* Goals:
e Algorithmic improvements to
oetter utilize GPUs

* Performance optimization using

oad balancing and autotuning
e Software modernization,
harmonization, and verification

FANSSIE Overview R

Solver Weak Scaling
Wall-clock time (s) vs. Nodes

//‘

1.00E+03

1.00E+02 CPU o—

GPU

Jerry Watkins, Sandia
4 16 64 256

—e—Cori (Haswell) 9.86E+01 9.92E+01 1.25E+02 1.97E+02 3.22E+02
Summit (V100) 3.01E+01 3.08E+01 3.81E+01 5.40E+01 7.78E+01
Speedup 3:.27 3.22 3.27 3.65 4.13

DOFs/GPU 367255 367773 368086 368401 368566
Problem size ranges form 2M to 566M unknowns.

1.00E+01

Progress: Velocity solver scaling on GPUs;
first AIS production runs on Perlmutter-gpu
(first of their kind(?))



3) Probabilistic AIS Projections

Actionable projections require
guantification of uncertainty

Goals: |
 UQ using MALI large ensembles

HadGEM2 RCP 8.5
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Progress: MALI contribution to Ice-Sheet Model
Intercomparison Project (ISMIP6-AIS-2300)
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3) Probabilistic AIS Projections

o B

Actionable projections require
guantification of uncertainty
Goals:
 UQusing MALI large ensembles

* parametric uncertainty,

multifidelity methods
e statistical and ML emulation

\
4

Progress: Probabilistic projections of Amery
Ice Shelf basin using Bayesian inference
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3) Probabilistic AIS Projections

Actionable projections require
guantification of uncertainty
Goals:

UQ using MALI large ensembles

parametric uncertainty,
multifidelity methods

statistical and ML emulation

E3SM simulations with fully

coupled AIS component

FANSSIE Overview
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Instability
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hydrofracture Marine melting

regime shift
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fanssie.github.io| *"gm's
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Marine Ice Cliff

1.Coupling of climate and Antarctic Ice Sheet in E3SM nsabitty @)
2.lce-sheet dynamics & fracture mechanics
3.Probabilistic projections of the Antarctic Ice Sheet

= Addressing AIS deep uncertainty requires integrated
computational/domain science collaboration

= team built over multiple previous projects
= Close coordination with E3SM project and other ecosystem projects
= Maintaing DOE leadership in ice-sheet science and development
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