Framework for Antarctic System Science in E3SM

Matt Hoffman

Los Alamos National Laboratory

- # = SciDAC Institute Member: FASTMath
- * = SciDAC Institute Member: RAPIDS2
- ^ = E3SM Project Member

- Matt Hoffman
- Steve Price ^
- Xylar Asay-Davis ^
- Carolyn Begeman ^
- Trevor Hillebrand ^

Trevor Hillebrand ^

- Alice Barthel ^
- Alex Hager (PD)
- Irena Vankova (PD)

National aboratories

- Mauro Perego #^ Jonathan Hu #
- Jerry Watkins ^ Irina Tezaur
- Luca Bertagna ^ Kim Liegeois
- John Jakeman # Max Carlson (PD)

- Sam Williams *
- Oscar Antepara

- Mark Shephard #
- Cameron Smith #
- Angel Castillo

- Nathan Urban
- Sanket Jantre (PD)

- Jeremy Bassis
- Sam Kachuck

- Charlie Zender ^
- Chloe Whicker (Ph.D. student UM)

E3SM Webinar | October 12, 2023 **FAnSSIE** Overview

Motivation: Antarctic Ice Sheet is largest uncertainty in future sea-level change

Problem: Feedbacks and tipping points in AIS processes and coupling

Future projections

FAnSSIE Overview

FAnSSIE Project Focus Areas

Coupling of climate and Antarctic Ice Sheet in E3SM

- Ice-sheet dynamics and fracture mechanics
- Probabilistic projections of the Antarctic Ice Sheet

How will threshold processes linking the coupled ice sheet, ocean, and atmosphere impact the contribution of the Antarctic Ice Sheet to sea-level change in the coming decades and centuries?

FAnSSIE Overview

1 Coupling AIS to E3SM: Ice-sheet/Ocean

Ocean Model domain advance

- In E3SM v1.2, MPAS-Ocean supported circulation beneath ice shelves, necessary to simulate iceshelf basal melting
- However, horizontal extent of ocean domain is fixed
- As AIS evolves, ocean domain must advance – major technical hurdle

Goals: active/inactive regions of mesh through

addition of thin film

- vertical coordinate improvements to avoid steeply sloping layers
- higher-order pressure gradient calculation

Coupling AIS to E3SM: Ice-sheet/Ocean Ocean model domain needs to advance as ice-sheet retreats

LANL

Goals:

 active/inactive regions of mesh through addition of thin film

Ocean model domain needs to

advance as ice-sheet retreats

- vertical coordinate improvements to avoid steeply sloping layers
- higher-order pressure gradient calculation

LANL

1 Coupling AIS to E3SM: Ice-sheet/Ocean

1 Coupling AIS to E3SM: Ice-sheet/Ocean

Potential challenges with E3SM OMEGA transition

Ice-sheet/ocean coupling requires ocean model features that are not standard for global ocean models. ProSPect and FAnSSIE have been significant investments in those developments for *MPAS-Ocean*.

- MPAS-Ocean and MALI coupled simulations are expected to begin this year, with coupling capability already far along
- Ice shelf cavities and melt fluxes not planned for initial Omega release
- Wetting and Drying for ice-shelf cavities would come later yet
- Omega is only planning on limited eddy parameterizations but fully eddy parameterization (GM+Redi) required to resolve the small eddies present in polar regions

We are coordinating with OMEGA and E3SM Polar teams, but additional resources may be required to:

- maintain an unsupported branch of E3SM with MPAS-Ocean's ice-shelf capabilities to achieve FAnSSIE (and E3SM) science objectives.
- preserve these capabilities in E3SM through the ocean model transition.

LANL

1 Coupling AIS to E3SM: Ice-sheet/Ocean

Adding subglacial discharge to ocean

- Subglacial discharge of meltwater known to enhance submarine melting in Greenland, but typically assumed to be negligble in Antarctica
- Used MALI's subglacial hydrology model to simulate discharge around AIS
- Subglacial discharge ~10% of ice-shelf basal melt flux
- Addition of this freshwater flux to MPAS-Ocean to come

Courtney Shafer, University of Buffalo (DOE Computational Science Graduate Fellow) Alex Hager, LANL

1 Coupling AIS to E3SM: Ice-sheet/Surface climate

UCI LANL

- Ice-shelf hydrofracture can occur when firn becomes saturated with meltwater
- Goals:
 - Improve and validate snow & firn physics in ELM
 - Connect firn water content in ELM to ice-shelf stress state in MALI

Progress: Evaluated 5 reanalysis products against AIS & GIS firn core records. Added ERA5 as data ATM option in E3SM.

FAnSSIE Overview

Taylor diagram shows ERA5 (ER5), MERRA2 (MR2) agree best with GrIS, AIS SUMup data (dashed).

1 Coupling AIS to E3SM: Ice-sheet/Surface climate

UCI LANL

- Ice-shelf hydrofracture can occur when firn becomes saturated with meltwater
- Goals:
 - Improve and validate snow & firn physics in ELM
 - Connect firn water content in ELM to ice-shelf stress state in MALI

Progress: 300-yr firn spin-up with reanalysis climate forcing produces AIS surface mass balance similar to reference values

2 Advanced Discretizations

- Most MALI algorithms are first-order; higher accuracy at reduced cost needed
- Goals:
 - High-order discretizations
 - Lower-fidelity models for cost savings
 - Initialization capabilities

velocity solver 3x cheaper than Mauro Perego (SNL 3d solver with similar accuracy

- Most MALI algorithms are first-order; lacksquarehigher accuracy at reduced cost needed
- Goals:
 - High-order discretizations
 - Lower-fidelity models lacksquarefor cost savings
 - Initialization capabilities

SNL

FASTMath

FAnSSIE Overview

ice shelf

Progress: depth-integrated velocity solver 3x cheaper than 3d solver with similar accuracy

ocean

1st order upwind advection

- Goals:
 - High-order discretizations
 - Lower-fidelity models lacksquarefor cost savings
 - Initialization capabilities

Progress: higher-order advection and time-stepping preserve sharp features in ice thickness and damage

Trevor Hillebrand (LANL)

glacier

3rd order flux-corrected transport

0.5

FASTMath

SNL

LANL

2 Advanced Discretizations

FAnSSIE Overview

Mauro Perego (SNL)

SNL

2 Ice-shelf Fracture Mechanics

 Existing fracture models use simple stress or strain rate based parameterizations

UM

SNL

LANL

FASTMath

2 Ice-shelf Fracture Mechanics

- Existing fracture models use simple stress or strain rate based parameterizations
- Goals:
 - Utilize a damage state variable that:
 - triggers calving of failed ice
 - weakens ice viscosity

Progress: higher-order advection and time-stepping preserve sharp features in damage

FAnSSIE Overview

- 0.0e+00

UM

2 Ice-shelf Fracture Mechanics

- Existing fracture models use simple stress or strain rate based parameterizations
- Goals:
 - Utilize a damage state variable that:
 - triggers calving of failed ice
 - weakens ice viscosity
 - Implement ductile+brittle methods that can form rifts and tabular icebergs
 - Couple fracture and ice rheology

UM

SNL

LANL

FASTMath

Simulated evolution of rifts in an idealized ice shelf using prototype model.

Verview

2 Unstructured Mesh Adaptivity

- Solution accuracy degrades at calving front and rifts
- Goals:
 - Feature tracking with level-sets
 - GPU-based mesh adaptivity using Omega_h library
 - Mesh node movements and swaps to keep mesh aligned with key features

Mauro Perego (SNL), Cameron Smith (RPI)

Progress: Incorporated the *Omega_h* mesh adaptivity library in MALI and implemented operational testing

2 MALI Performance Improvements

- New physics will impact performance
- Goals:
 - Algorithmic improvements to better utilize GPUs
 - Performance optimization using load balancing and autotuning
 - Software modernization, harmonization, and verification

FAnSSIE Overview

2 MALI Performance Improvements

- New physics will impact performance
- Goals:
 - Algorithmic improvements to better utilize GPUs
 - Performance optimization using load balancing and autotuning
 - Software modernization, harmonization, and verification

Progress: Velocity solver scaling on GPUs;
first AIS production runs on Perlmutter-gpu
(first of their kind(?))

Problem size ranges form 2M to 566M unknowns.

V-solar action

lacksquare

Goals:

LANL

3 Probabilistic AIS Projections

- Actionable projections require quantification of uncertainty
- Goals:
 - UQ using MALI large ensembles
 - parametric uncertainty, multifidelity methods
 - statistical and ML emulation

2015

2000

2050

LANL

2150

2100

2175

3 Probabilistic AIS Projections

- Actionable projections require ulletquantification of uncertainty
- Goals:
 - UQ using MALI large ensembles
 - parametric uncertainty, multifidelity methods
 - statistical and ML emulation
 - E3SM simulations with fully coupled AIS component

FAnSSIE Summary & Outlook

fanssie.github.io

1. Coupling of climate and Antarctic Ice Sheet in E3SM

- 2.Ice-sheet dynamics & fracture mechanics
- **3**.Probabilistic projections of the Antarctic Ice Sheet

- Addressing AIS deep uncertainty requires integrated computational/domain science collaboration
 - team built over multiple previous projects
- Close coordination with E3SM project and other ecosystem projects
- Maintaing DOE leadership in ice-sheet science and development