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Project objectives

The Study for Exascale Advances in a High-resolution Ocean using ROMS
Coupled to E3SM (SEAHORCE) SciDACS5 project will:

Focus on improved representations of small-scale coastal and open-ocean
processes — such as river plumes, coastal fronts, and meso- and submesoscale
eddy processes — in the context of global ESM,

Design a scientific and technical framework for two-way coupling between
ROMS and MPAS-O for optional, flexible, efficient, and robust dynamical up- and
downscaling, and

Create ROMS-X, a GPU-enabled port of ROMS that will exploit the latest DOE
exascale HPC architectures.



Dynamics Across Scales with MPAS-O

O(10km) ~ E3SM-HR O(2km) submesoscale permitting

AN

O(30km) ‘ESM-LR’ config. (not shown)
Missing dynamic evolution of loop
current/eddies.

O(18km) ‘E3SM-HR’ confiaq.
Eddy features present, but weak

O(2km) confiq.

Sharper fronts, and instabilities forming
within the fronts, approaching
submesoscale*

*Submesoscale is a dynamical scaling that depends
on stratification and flow conditions,

submesoscale: Ro~1, Ri~1

mesoscale: Ro<<1, Ri>>1
or, anisotropic energetic instabilities




Dynamics Across Scales with MPAS-O

Submesoscale-permitting simulations with MPAS-Ocean positions us at forefront of contemporary
O(1-5km) ‘very high-resolution’ ocean modeling efforts worldwide — but...

...these simulations are expensive!

O(2km) represent highest resolution (baroclinic) MPAS-O simulation to-date.

Current throughput: 96 simulated-days-per-day using 12,000 cores (NERSC HPC).

Short, 5 year model spin-up requires 3 weeks wall clock.

Are submesoscale dynamics ‘well-enough’ resolved at O(2km) resolution? No...

Expect x4-x8 slowdown to achieve O(1km) resolution.

Typical ROMS applications employ O(100®m) resolution to capture submesoscale effects.

There are limits to how far we can refine resolution with MPAS-O, however, E3SM-HR (18-6km)
efficiently spans the mesoscale-permitting space for global climate modeling, allowing
meaningful coupling to ‘coastal’ or submesoscale models.

A targeted, temporary, stealth nesting/coupling approach is reasonable considering

e Scientific questions may be limited to a particular domain (e.g., ICoM, GLM, InteRFACE)
e Smaller scale process have shorter spin-ups - a year is sufficient for most continental shelves
e Many small scale processes do not influence larger scales, so nesting will often be OK



Relevance for E3SM

A hierarchical approach using a nested/coupled ROMS in MPAS-O allows:

e Downscaling for actionable projections
Better project climate signals in coastal regions, e.g., marine heat waves,
and nutrient and carbon cycling in river plumes.

e Better process understanding

E.g., biases in surface temperatures could be due to mis- or
under-represented ocean processes; local refinement can help identify
the sources of these biases.

e More efficient simulations

A O(10km) E3SM run with targeted, temporarily nested grid refinement
will allow for more efficient simulations, compared to a single refined
MPAS-O grid due to long oceanic spin-up times.

ROMS-X will allow us to continue this approach with GPU enabled E3SM.
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MPAS-O/ROMS comparisons

Idealized domain baroclinic instability in a channel
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Both models have similar
surface vorticity structure,
especially in the vicinity of the
strong cyclonic ({/f>1) flow at
the fronts.

ROMS has slightly stronger
convergence and divergence in
regions of strong cyclonic flow
({/f>1) indicating frotogenetic
dynamics within each model
differs slightly.

Both MPAS-0O and ROMS show qualitatively similar flow characteristics in vorticity and
other properties, suggesting a similar effective resolution of dynamical properties.
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Next steps
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We have a framework to compare
frontal processes at different
resolutions

Model results suggest the same
meso- to sub-mescoscale transition
seen in the Loop Current region in
the 2km MPAS-O run, at smaller
spatial scales.




MOAB interpolates MPAS-O state variables to a ROMS grid

Planned subdomains
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The ROMS domain is based on the
NISKINE ONR project model domain



Remapping from MPAS-O to ROMS
grids in the E3SM coupler MOAB.

MPAS-O salinity field
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Cubic B-spline interpolation from MPAS-O to ROMS
meshes reconstruct the field data more smoothly, with
asymptotically third order accuracy.
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Locally conservative methods imprint the parent grid



ROMS-X development

ROMS-X is a new code built on the AMReX software framework, and can
currently run with MPI + CUDA or HIP for NVIDIA/AMD GPUs.

Currently, ROMS-X has much of the base functionality of ROMS, implementing
the same equations of motion for momentum and tracer evolution.

Preliminary ROMS-X weak scaling results for a modified upwelling problem on
NVIDIA A100s of Perlmutter (graph below) are promising. (Perfect weak scaling
would be a horizontal line)
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ROMS-X is being carefully
designed and implemented to
perform robustly when coupled
- M/ with other codes, and will
replace ROMS in the coupler
development work soon.
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E3SM pull requests

New ‘free-slip’ momentum boundary conditions have been implemented for MPAS-O, expanding
our capability to model interactions with coastlines:
https://github.com/E3SM-Ocean-Discussion/E3SM/pull/49

An optimization of time-stepping coefficients for MPAS-O has been achieved, reducing the
numerical dissipation associated with the split barotropic-baroclinic integration scheme to reduce
the damping of surface gravity waves. This work is a collaboration with the ICoM project:
https://github.com/E3SM-Ocean-Discussion/E3SM/pull/48

An idealized channel configuration has been developed, and will be added to the COMPASS
environment, providing an idealized test case to study fronts and submesoscale processes.

E3SM-MOAB coupler draft pull request being prepared to merge the first version of the MOAB
coupler into E3SM that can work alongside the current MCT coupler.



Conclusions
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Initial comparisons between MPAS-O and ROMS indicate both models
have roughly have the same effective resolution, and are capable of
accurately simulating submesoscale processes.

Third-order cubic B spline interpolation methods seem promising, and we
are exploring alternatives to deal with extrapolation in regions of strong
bathymetry.

ROMS-X is running with a minimal, but functional dynamical core. We
have engaged other groups as beta-testers, to help prioritize
development.





