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Project Overview

• The Atlantic Meridional Overturning Circulation (AMOC) is a well known 
E3SM bias at non-eddy resolving resolutions

• A major goal of the ImPACTS project is to advance our understanding of 
AMOC to improve its representation in models like E3SM

Weijer et al 2020

Caldwell et al 2019



AMOC

• Redistributes significant amounts of heat and salt
• Linked to numerous climate impacts

• Regional temperature impacts, Atlantic Hurricanes , 
Sahel Droughts

• Loss of AMOC has strong climatic impacts.

Jackson et al. (2015)



AMOC Stability

• AMOC bi-stability long hypothesized 
and shown in simple models (e.g. 
box models, ICMs)

Weijer et al (2003)

van Westen (2023)

• Freshwater transport at 34S 
(FovS) is related to AMOC stability 
and strength



Project Goals

• Understand the weak AMOC simulated by E3SM and improve the 
representation.
• Leverage traditional oceanographic analyses in addition to advanced AI 

analysis (e.g. NN based model adjoint)

• Improve analysis capability of ocean models
• Improve in situ diagnostics, contribute to common analyses frameworks (e.g. 

METRIC), create novel algorithms to make lagrangian particle tracking 
possible for long term, high resolution configurations

• Assess AMOC stability at coarse and eddy resolving resolution
• Advance spin up capabilities with AI methods
• Improve model performance (GPU refactorization, new time stepping)



Project Team and Structure

• Project team
• Eight institutions
• Eight members of SciDAC RAPIDS2 institute
• Well balanced between ASCR and BER efforts

• Initial project structure
• Simulations and Analysis*

• Adjoint
• AI/Particles*

• Performance

*Early career lead



Analysis

Initial progress
• Designed new simulations (uniform IC)

• Top right

• Lots of analysis on going
• Water masses
• Pathway analysis
• Fov
• Streamfunction

• Some analyses being hardened for 
MPAS-Analysis integration
• Bottom right



Example: Fov and AIW

• SORRM simulations 
missing AIW

• Large impact on Fov
• Reduces Fov, which may 

reduce AMOC



Adjoint

• Goal: inferring the sensitivity of AMOC with respect to a large number of 
input model parameters that may or may not have spatial structure, but 
which are temporally invariant
•Approach: obtain neural-network-based adjoints

• Exploit differentiability of NN emulators of AMOC
• Use DeepHyper (AutoML software package; RAPIDS2)
• Training data consisting of

• CMIP6 data
• MPAS stacked shallow-water (SSW) simulations
• E3SM historical and preindustrial simulations
• ECCO/MITgcm simulations incl. adjoint sensitivity calculations

• Year 1 tasks:
• Pretrain adjoint surrogate on CMIP6 data
• Create adjoint of MPAS-SSW Julia



MPAS SSW (Julia)

• Simplified MPAS
• Adding Vertical mixing 

Other possibilities:
• Temperature and salinity
• Nonlinear advection

• Differentiating the code 
using Enzyme.jl
• Partly done

• Currently working with 
other models

• No momentum advection (linearized)
• No tracer (T, S) advection 
• No equation of state (constant density)
• No vertical velocity/momentum advection
• No vertical mixing (KPP)
• No horizontal mixing (del2, del4)
• No bottom friction
• No surface flux/stress/pressure
• No mesoscale parameterizations (GM, 

Redi)
• Periodic boundary conditions

• 1st order timestepping
• Domain decomposition 

limited to rectangular 
meshes

• Single layer halo 
exchanges

• No ALE vertical coordinate

Physics/Processes Algorithmic



Adjoint matching training: 
Burgers’ Equation

• 1D Burgers’ Equation was studied. 
• Data was generated from a fixed initial condition
• DeepHyper was not used



Adjoint matching training: 
Burgers’ Equation

• Varying the initial condition
• Parameter was not varied



Goal: Develop deep learning-based surrogate models for 
reconstructing climate maps from limited measurements
Current work: Developing a deep learning-based surrogate model 
for reconstructing climate maps from limited measurements

● Dataset: Global surface temperature data
● Objective: Reconstructing the whole data from 

randomly distributed data points
● Methodology: coordinates-based neural networks

Preliminary results: figures on the right

Future plans: 
● Fine-tuning the model 
● Conducting baseline 

comparisons to enhance its 
performance

ML Analysis



Tensor Factorizations

Progress:

1. How to article/notebook - What are tensor factorizations + 
code for Earth science

2. Offline TF code for unstructured meshes (graph-based)
1. First application to ESM output

3. Mode comparison for EOFs between different model 
representations of AMOC (GFDL and CESM2)

Started:

1. Dynamic tensor decompositions
2. Online codes for tensor decompositions

Next - Round out and publish results:

1. Compare modes of CMIP6 AMOC to untangle AMOC 
strength differences

2. Compare unstructured mesh modes versus traditional EOFs 
using new mode comparison tool

Leading EOF from GFDL and CESM2

Maximal Covariance Analysis of Leading EOF



Parallel 
Lagrangian 
Particle 
Tracking



Plan: Multiple tracks 
• Create a GPU enabled particle tracking code based on a well 

established ASCR developed particle tracking code.
• Add ocean specific capabilities (ARGO)

• Exploit a recently developed* reinforcement learning approach 
to optimize the processor domain decomposition (including on 
the fly)
• This new technique has shown to scale well up to more than 16K 

processors for a domain with 4,0963.
• Also improves efficiencies of visualization and analysis

Particle Tracking 

Fig. 1: Decision-making pipeline of a reinforcement learning 
agent. 

J. Xu, H. Guo, H.-W. Shen, M. Raj, S. W. Wurster, T. Peterka, 
IEEE Transactions on Visualization and Computer Graphics, 2022, 

Early Access

Goal: To enable a long-term particle tracking capability for ocean 
models that is scalable to exascale resources and runs efficiently on 
emerging architectures.  

Fig. 2: Flow visualizations. 

policy 
function

workloads

comm. costs sampling
action reward

parameter update

probabilities of actions

*Developed by team members under prior funding



In Situ Workflow Coupling
Couple MPAS-O with in situ particle tracing, bypassing storage

Progress to date:
• Custom build of MPAS-O with 

required dependencies (netCDF, 
HDF5, parallel netCDF, Scorpio, 
LowFive)

• Generation of COMPASS test cases 
(e.g., baroclinic channel) on custom 
machine and successful execution of 
custom build of MPAS-O

• In situ coupling of MPAS-O with test 
code that prints variables (in 
progress)

In situ coupling of MPAS-O with particle 
tracing through LowFive

Software stack installed 
with Spack



Performance

• Working in collaboration with E3SM/ECP and vendors (Cray, Nvidia)
• GPU performance of standalone MPAS Ocean on Crusher is about 7 times 

slower than CPU performance, while GPU performance is higher on other 
machines.  
• Test configuration (QU240 ocean)

• Crusher(ORNL), 1 AMD EPYC 7A53 CPU and 1 AMD MI250X GPU
• Cray compiler cce/15.0.0, AMD rocm/5.1.0

• Initial Performance Measurement

Version Arch Total time(sec) Time integration 
(sec) Se tracer tend(sec) Se implicit vert mix(sec)

Initial
CPU 21.08 16.14 4.22 2.89

GPU 155.31 141.92 95.30 25.04



GPU Performance Analysis

● The three MPAS-Ocean kernels 
dominates the timeline view.

● Especially 
“ocn_tracer_advection_mono_tend” 
kernel takes the longest execution 
time.

Zoom-in

=> Investigate why the three GPU kernels are expensive.



Performance Optimization

• Further performance analysis revealed…
• three temporary arrays(wgtTmp, sgnTmp, flxTmp) in 

“ocn_tracer_advection_mono_tend” kernel create “private” copies of 
them per every GPU threads(2986) in a OpenACC gang.

• Optimization direction: removing OpenACC private arrays

!$acc    private(i, k, icell, cell1, cell2, coef1, coef3, &
!$acc            wgtTmp, sgnTmp, flxTmp, tracerWeight)

…

do k = minLevelCell(iCell), maxLevelCell(iCell)
flxTmp(k) = flxTmp(k) + tracerCur(k,iCell)* &
wgtTmp(k)*(coef1 + coef3*sgnTmp(k))

end do ! k loop

!$acc    private(i, k, icell, cell1, cell2, coef1, coef3, &
!$acc            tracerWeight)

…

do k = minLevelCell(iCell), maxLevelCell(iCell)
highOrderFlx(k,iEdge) = highOrderFlx(k,iEdge) + tracerCur(k,iCell)* &
(normalThicknessFlux(k,iEdge)* advMaskHighOrder(k,iEdge))* &
(coef1 + coef3*sign(1.0_RKIND, normalThicknessFlux(k,iEdge)))

end do ! k loop

original optimized



Speed-up and Future work

• Two versions are verified as bit-for-bit using CPRNC utility
• Further optimizations

• Found similar issue at the kernels in “ocn_tracer_vmix_tend_implicit”

Version Arch Total time(sec) Time integration (sec) Se tracer tend(sec) Se implicit vert mix(sec)

Initial
CPU 21.08 16.14 4.22 2.89

GPU 155.31 141.92 95.30 25.04

Optimized
CPU 21.14 16.15 4.17 2.89

GPU 58.65 52.41 6.29 25.52



Summary

• Progress to date
• Generated new analysis for E3SM simulations
• Potential new explanations for weak AMOC in E3SM
• Initial AI based explorations show promise (especially for injecting high res 

variability)
• Driving particle code with E3SM data and porting code to GPU
• Developing new collaborations

• Next steps
• Perturbed parameter simulations
• MPAS-Julia and reduced order PPE
• Streaming ML
• Time stepping improvements and GPU refactorization


