#### Capturing the Dynamics of Compound Flooding in E3SM

Gautam Bisht1\*

Mark Adams<sup>2+</sup>, Jed Brown<sup>3+</sup>, Albert Cowie<sup>6</sup>, Darren Engwirda<sup>4+</sup>, Dongyu Feng<sup>1</sup>, Dalei Hao<sup>1</sup>, Jeffrey Johnson<sup>5+</sup>, Matthew Knepley<sup>6+</sup>, Mukesh Kumar<sup>7+</sup>, Ashwin Raman<sup>7</sup>, Zeli Tan<sup>1+</sup>, and Donghui Xu<sup>1</sup>

<sup>1</sup>PNNL, <sup>2</sup>LBNL, <sup>3</sup>U. Col., <sup>4</sup>LANL, <sup>5</sup>Cohere LLC, <sup>6</sup>U. Buffalo, <sup>7</sup>U. Alabama \* PI, <sup>+</sup> co-PI

E3SM Webinar, 8 June, 2023

Research supported by BER and ASCR



Scientific Discovery through Advanced Computing

# Scientific Discovery through Advanced Computing (SciDAC)



# **Sci**entific **D**iscovery through **A**dvanced **C**omputing (SciDAC)

- Started in 2001 (1st)
- Re-competed in 2006 (2nd), 2011 (3rd), 2017 (4th), and 2022 (5th)
- Current SciDAC Institutes include:
  - FASTMath
  - 2. RAPIDS
- Current SciDAC BER partnerships include 7 projects

## Compound Flooding (CF)

Compound events are described as (IPCC2012)

- simultaneous or successively occurring (climate-related) events such as simultaneous coastal and fluvial floods,
- 2. events combined with background conditions that augment their impacts such as rainfall on already saturated soils, or
- 3. a combination of (several) average values of climatic variables that result in an extreme event



# CF and Its Impacts Pose a Significant Threat to Human and Natural Systems



# CF and Its Impacts Pose a Significant Threat to Human and Natural Systems



# Several Scientific and Computational Bottlenecks Exists in E3SM for Studying CF and Its Impacts

- SB1: MOSART's assumption about subgrid structure limits the finest mesh resolution to be ≈ 5km
- ▶ SB2: MOSART's existing physics has few limitations in accurately capturing CF events
  - Backwater propagation occurs only along river network
  - Instantaneous exchange of water between river channel and floodplain
  - Lack of density-dependent flow
- CB1: Single discretization implementation does not allow for the evaluation of numerical algorithms for solution accuracy and algorithmic scalability
- ▶ CB2: No support for heterogeneous computing architectures

## Project Objectives (POs)





- ▶ PO1: Develop a rigorously verified and validated river dynamical core (RDycore) for E3SM to mechanistically model pluvial, fluvial, and coastal compound flooding and their impacts on sediment dynamics and riverine saltwater intrusion.
- ▶ PO2: Develop computationally efficient and scalable RDycore and assess its performance on heterogeneous computing architectures.
- ▶ PO3: Improve the predictive understanding of CF, SD, and rSWI due to the simultaneous but uncertain occurrence of multiple drivers of floods in a changing climate.

#### Research Foci



1. Set up an open source repository for the RDycore library with an initial implementation of the solver for shallow water equation and code verification was performed.





- 1. Set up an open source repository for the RDycore library with an initial implementation of the solver for shallow water equation and code verification was performed.
- Identified and configured multiple models for benchmarking (OFM, PHIM3D, TELEMAC-MASCARET) and driving (ELM) RDycore.









- 1. Set up an open source repository for the RDycore library with an initial implementation of the solver for shallow water equation and code verification was performed.
- Identified and configured multiple models for benchmarking (OFM, PHIM3D, TELEMAC-MASCARET) and driving (ELM) RDycore.
- 3. Extended E3SM-supported JIGSAW meshing library to new floodplain resolving ultra high-resolution.



- 1. Set up an open source repository for the RDycore library with an initial implementation of the solver for shallow water equation and code verification was performed.
- Identified and configured multiple models for benchmarking (OFM, PHIM3D, TELEMAC-MASCARET) and driving (ELM) RDycore.
- 3. Extended E3SM-supported JIGSAW meshing library to new floodplain resolving ultra high-resolution.
- Completed an initial development in PETSc and libCEED, a numerical library for higher-order FE methods, to support FV methods in libCEED.



- 1. Set up an open source repository for the RDycore library with an initial implementation of the solver for shallow water equation and code verification was performed.
- Identified and configured multiple models for benchmarking (OFM, PHIM3D, TELEMAC-MASCARET) and driving (ELM) RDycore.
- 3. Extended E3SM-supported JIGSAW meshing library to new floodplain resolving ultra high-resolution.
- Completed an initial development in PETSc and libCEED, a numerical library for higher-order FE methods, to support FV methods in libCEED.
- Added RDycore within E3SM and performed short simulations on Perlmutter, Summit, Crusher, and Frontier with RDycore using GPUs.





Team member: Gautam Bisht

### RDycore: Initial Development and Verification

- Implemented first-order accurate space (FV) and time (explicit) discretization methods
- Works on both triangle and quadrilateral mesh
- Performed initial code verification for two previously published problems





# Development of Benchmarks: Houston Harvey Flooding









- Selected Overland Flow Model (OFM)
- Selected the Houston Harvey flooding event, August 2017
- Spatially-homogenous, but temporally varying precipitation forcing is applied
- A time-varying tidal stream outflow BC is used
- When coarsening the mesh, the simulation efficiency increases, but accuracy decreases



### Development of Benchmarks: Sediment Dynamics

- Selected TELEMAC-MASCARET as the benchmark model
- Selected the Janauaca catchment in the Amazon as the study site
- Completed a 10-yr flow simulation with 8 inflow BCs and 3 open flow BCs
- Performed an initial 1-yr sediment dynamics simulation





# Unstructured meshes: global-to-(sub)watershed scales...

Push E3SM unstructured meshing workflow (JIGSAW library) to new 'ultra' high-resolution floodplain resolving levels.



Support additional boundary 'labelling' of geometry as well as XDMF/EXODUS file I/O, for PETSc interoperability.

## PETSc and libCEED solver GPU/device portability

- Non-linear SWE:  $\mathbf{X}_t = F(\mathbf{X})$
- PETSc provides multiple time integration methods
- Portability provided with two options on most architectures:
  - Vendor specific back-ends: CUDA, HIP
  - Kokkos back-end: eg, CUDA, HIP, SYCL, and OpenMP

| Programming<br>Model | Supporting Package            | GPUs (devices)    |
|----------------------|-------------------------------|-------------------|
| CUDA                 | cuBLAS, cuSPARSE, Thrust      | NVIDIA            |
| HIP                  | hipBLAS, hipSparse, hipThrust | AMD               |
| Kokkos               | Kokkos, Kokkos-Kernels        | NVIDA, AMD, Intel |

- ▶ libCEED has been extended for FV method to compute the F(X) on the device
- ▶ PETSc's DMPlex has been extended to support libCEED's FV method

#### E3SM-RDycore Integration





- A test implementation of E3SM-RDycore has been completed.
- PETSc and RDycore are installed before building an E3SM case.
- RDycore initializes a simulation, runs to completion, and shuts off.
- RDycore tested on GPUs: (a) NVIDIA (Perlmutter and Summit) and (b) AMD (Crusher and Frontier).
- However, presently there is no exchange of information between ELM and RDycore.
- Exploited PETSc's runtime configurability to solve SWE on CPU or GPU via:
  - ► CPU : e3sm.exe
  - GPU via Kokkos: e3sm.exe -dm\_vec\_type kokkos
  - GPU via CUDA : e3sm.exe -dm\_vec\_type cuda
  - GPU via HIP : e3sm.exe -dm\_vec\_type hip





Thank you