Capturing the Dynamics of Compound Flooding in E3SM

Gautam Bisht¹*, Mark Adams²+, Jed Brown³+, Albert Cowie⁶, Darren Engwirda⁴+, Dongyu Feng¹, Dalei Hao¹, Jeffrey Johnson⁵+, Matthew Knepley⁶+, Mukesh Kumar⁷+, Ashwin Raman⁷, Zeli Tan¹+, and Donghui Xu¹

¹PNNL, ²LBNL, ³U. Col., ⁴LANL, ⁵Cohere LLC, ⁶U. Buffalo, ⁷U. Alabama
* PI, + co-PI

E3SM Webinar, 8 June, 2023

Research supported by BER and ASCR

Scientific Discovery through Advanced Computing
Scientific Discovery through Advanced Computing (SciDAC)
Scientific Discovery through Advanced Computing (SciDAC)

- Started in 2001 (1st)
- Re-competed in 2006 (2nd), 2011 (3rd), 2017 (4th), and 2022 (5th)
- Current SciDAC Institutes include:
 1. FASTMath
 2. RAPIDS
- Current SciDAC BER partnerships include 7 projects
Compound Flooding (CF)

Compound events are described as (IPCC2012)

1. simultaneous or successively occurring (climate-related) events such as simultaneous coastal and fluvial floods,
2. events combined with background conditions that augment their impacts such as rainfall on already saturated soils, or
3. a combination of (several) average values of climatic variables that result in an extreme event

Santiago-Collaz et al. (2019)
CF and Its Impacts Pose a Significant Threat to Human and Natural Systems

- June 10-13, 2022, an atmospheric river event struck Yellowstone National Park.
- 2-3 inches of rain, combined with warm overnight temperatures, melted large amount of snow, resulting in historic flooding
CF and Its Impacts Pose a Significant Threat to Human and Natural Systems

Extreme El Niño events (EENE) increase suspended sediment yield by 3-60 times

Morera et al. (2017)
Several Scientific and Computational Bottlenecks Exists in E3SM for Studying CF and Its Impacts

- SB1: MOSART’s assumption about subgrid structure limits the finest mesh resolution to be $\approx 5\text{km}$

- SB2: MOSART’s existing physics has few limitations in accurately capturing CF events
 - Backwater propagation occurs only along river network
 - Instantaneous exchange of water between river channel and floodplain
 - Lack of density-dependent flow

- CB1: Single discretization implementation does not allow for the evaluation of numerical algorithms for solution accuracy and algorithmic scalability

- CB2: No support for heterogeneous computing architectures
Project Objectives (POs)

- **PO1:** Develop a rigorously verified and validated river dynamical core (RDycore) for E3SM to mechanistically model pluvial, fluvial, and coastal compound flooding and their impacts on sediment dynamics and riverine saltwater intrusion.

- **PO2:** Develop computationally efficient and scalable RDycore and assess its performance on heterogeneous computing architectures.

- **PO3:** Improve the predictive understanding of CF, SD, and rSWI due to the simultaneous but uncertain occurrence of multiple drivers of floods in a changing climate.
Research Foci

Research Focus 1 Develop a verified and validated RDycore to simulate CF and its impact on SD and rSWI

- (a) Physics formulations
 - Shallow Water Equations
 - Advection Diffusion Transport Equation
- (b) Variable Resolution Adaptive Mesh

RDycore

- (c) Software Engineering Framework for Code Development
 - SWS_IFunction(...)
 - ...
- (d) Performance Portable Libraries
 - PETSc and libCEED

Model Verification

- (e) Error vs. Nx
- (f) Model Benchmarking using Testbed

Validation Simulations

- (g) Flood extent vs. Time

Climate Change Simulations

- (h) Model Scalability
 - Wallclock time vs. Cores
- (i) Climate Change Simulations
 - (2020, 2010)
Project Achievements

1. Set up an open source repository for the RDycore library with an initial implementation of the solver for shallow water equation and code verification was performed.

Team member: Jeff Johnson

Team members: Donghui Xu, Gautam Bisht
Project Achievements

1. Set up an open source repository for the RDycore library with an initial implementation of the solver for shallow water equation and code verification was performed.

2. Identified and configured multiple models for benchmarking (OFM, PHIM3D, TELEMAC-MASCARET) and driving (ELM) RDycore.
Project Achievements

1. Set up an open source repository for the RDycore library with an initial implementation of the solver for shallow water equation and code verification was performed.

2. Identified and configured multiple models for benchmarking (OFM, PHIM3D, TELEMAC-MASCARET) and driving (ELM) RDycore.

3. Extended E3SM-supported JIGSAW meshing library to new floodplain resolving ultra high-resolution.

Team member: Darren Engwirda
Project Achievements

1. Set up an open source repository for the RDycore library with an initial implementation of the solver for shallow water equation and code verification was performed.

2. Identified and configured multiple models for benchmarking (OFM, PHIM3D, TELEMAC-MASCARET) and driving (ELM) RDycore.

3. Extended E3SM-supported JIGSAW meshing library to new floodplain resolving ultra high-resolution.

4. Completed an initial development in PETSc and libCEED, a numerical library for higher-order FE methods, to support FV methods in libCEED.

Team member: Jed Brown, Matt Knepley, Antonio Rowle, Mark Adams
Project Achievements

1. Set up an open source repository for the RDycore library with an initial implementation of the solver for shallow water equation and code verification was performed.

2. Identified and configured multiple models for benchmarking (OFM, PHIM3D, TELEMAC-MASCARET) and driving (ELM) RDycore.

3. Extended E3SM-supported JIGSAW meshing library to new floodplain resolving ultra high-resolution.

4. Completed an initial development in PETSc and libCEED, a numerical library for higher-order FE methods, to support FV methods in libCEED.

5. Added RDycore within E3SM and performed short simulations on Perlmutter, Summit, Crusher, and Frontier with RDycore using GPUs.

Team member: Gautam Bisht
RDycore: Initial Development and Verification

- Implemented first-order accurate space (FV) and time (explicit) discretization methods
- Works on both triangle and quadrilateral mesh
- Performed initial code verification for two previously published problems
Development of Benchmarks: Houston Harvey Flooding

- Selected Overland Flow Model (OFM)
- Selected the Houston Harvey flooding event, August 2017
- Spatially-homogenous, but temporally varying precipitation forcing is applied
- A time-varying tidal stream outflow BC is used
- When coarsening the mesh, the simulation efficiency increases, but accuracy decreases
Development of Benchmarks: Sediment Dynamics

- Selected TELEMAC-MASCARET as the benchmark model
- Selected the Janauaca catchment in the Amazon as the study site
- Completed a 10-yr flow simulation with 8 inflow BCs and 3 open flow BCs
- Performed an initial 1-yr sediment dynamics simulation
Unstructured meshes: global-to-(sub)watershed scales...

Push E3SM unstructured meshing workflow (JIGSAW library) to new 'ultra' high-resolution floodplain resolving levels.

Support additional boundary 'labelling' of geometry as well as XDMF/EXODUS file I/O, for PETSc interoperability.
PETSc and libCEED solver GPU/device portability

- Non-linear SWE: $\mathbf{X}_t = F(\mathbf{X})$
- PETSc provides multiple time integration methods
- Portability provided with two options on most architectures:
 - Vendor specific back-ends: CUDA, HIP
 - Kokkos back-end: eg, CUDA, HIP, SYCL, and OpenMP

<table>
<thead>
<tr>
<th>Programming Model</th>
<th>Supporting Package</th>
<th>GPUs (devices)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CUDA</td>
<td>cuBLAS, cuSPARSE, Thrust</td>
<td>NVIDIA</td>
</tr>
<tr>
<td>HIP</td>
<td>hipBLAS, hipSparse, hipThrust</td>
<td>AMD</td>
</tr>
<tr>
<td>Kokkos</td>
<td>Kokkos, Kokkos-Kernels</td>
<td>NVIDIA, AMD, Intel</td>
</tr>
</tbody>
</table>

- libCEED has been extended for FV method to compute the $F(\mathbf{X})$ on the device
- PETSc’s DMPllex has been extended to support libCEED’s FV method
A test implementation of E3SM–RDycore has been completed.

PETSc and RDycore are installed before building an E3SM case.

RDycore initializes a simulation, runs to completion, and shuts off.

RDycore tested on GPUs: (a) NVIDIA (Perlmutter and Summit) and (b) AMD (Crusher and Frontier).

However, presently there is no exchange of information between ELM and RDycore.

Exploited PETSc's runtime configurability to solve SWE on CPU or GPU via:
 - CPU : e3sm.exe
 - GPU via Kokkos: e3sm.exe -dm_vec_type kokkos
 - GPU via CUDA : e3sm.exe -dm_vec_type cuda
 - GPU via HIP : e3sm.exe -dm_vec_type hip
Thank you