

## The BOSS microphysics framework

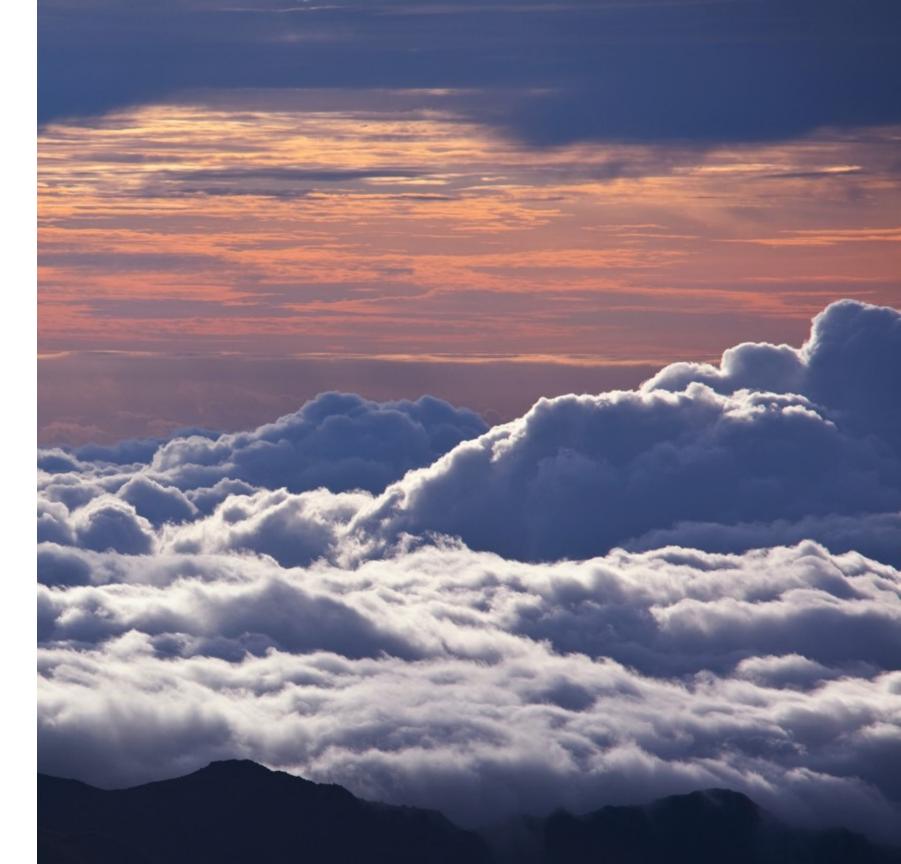
March 20, 2023

### **Sean Patrick Santos**

with Marcus van-Lier Walqui and Hugh Morrison



PNNL is operated by Battelle for the U.S. Department of Energy







- What is BOSS?
  - Bayesian methodology
  - Physical/mathematical constraints
- Results from emulating the TAU bin model in idealized 1-D driver:
  - Evaluation contexts: direct vs. time-evolving
  - What information is most useful for predicting autoconversion?
- Further steps:
  - Single-category liquid microphysics
  - Emulation in LES
  - BOSS in EAM





- BOSS is the "Bayesian Observationally constrained Statistical-physical Scheme", actually a family of microphysics schemes developed with similar methodologies.
- BOSS schemes are data-driven (supervised machine learning).
  - Input data theoretically can be any output of a model implementing BOSS.
    - ✓ Microphysical process rates themselves
    - ✓ Precipitation and liquid water content
    - $\checkmark$  Averaged outputs from climate models (e.g. annual-mean radiative forcings)
  - How to best combine/weight data from very different sources is not settled.
- BOSS schemes are not "black-box".
  - The process rate equations in a BOSS scheme can be written down succinctly and look like those of traditional parameterizations.



### **Basic anatomy of a bulk microphysics scheme**

- We start with a representation of the drop size distribution (DSD).
  - In a bulk scheme we typically use the distribution's moments to describe it.
    - ✓ For a DSD N(D) that is a function of diameter D, the n-th moment is  $M_n = \int_0^\infty D^n N(D) dD$ .
    - ✓ 0<sup>th</sup> moment is total number, 3<sup>rd</sup> proportional to total liquid mass, 6<sup>th</sup> is radar reflectivity factor, etc.
- The goal of the microphysics scheme is to evolve these moments in time:

• 
$$\frac{dM_n}{dt} = \left(\frac{dM_n}{dt}\right)_{proc1} + \left(\frac{dM_n}{dt}\right)_{proc2} + \dots$$

- Proc1, proc2, etc. denote the processes that affect a given moment, e.g. condensation, autoconversion, accretion, sedimentation...
- For most processes, BOSS uses sums of power laws, e.g.  $\left(\frac{dM_n}{dt}\right)_{COII} = \sum_i a_i \prod_j M_j^{p_{ij}}$
- For sedimentation we predict fall speed.

• 
$$\left(\frac{dM_n}{dt}\right)_{sed} = \frac{d}{dz}(v_n M_n), v_n = \sum_i a_i \prod_j M_j^{b_{ij}}$$
, (with some corrections e.g.

. for air density)

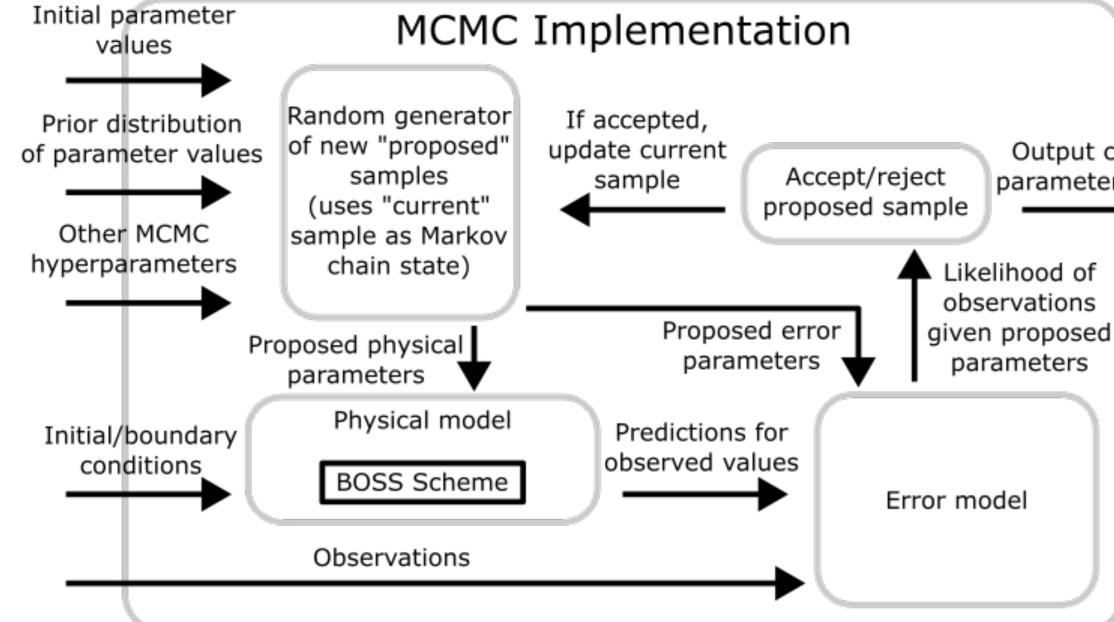


### **How BOSS schemes are developed**

- 1. Get data to use for training the scheme (and evaluation).
- 2. Choose prognostic moments for the microphysics scheme.
- 3. Choose an ansatz of process rate formulas with a moderately large number of adjustable parameters (~25-50 currently).
- 4. Choose an "error model", an assumed probability distribution for model-data discrepancy.
- 5. Use Markov chain Monte Carlo (MCMC) to find probability distribution of parameter values via Bayesian inference.
  - Need some (typically weak) prior distribution dictating plausible parameter values.
  - We typically use the maximum likelihood estimator (MLE) as estimated "best" values, but also get the whole posterior probability distribution.



### Flow of data in MCMC used to train BOSS





### Output current parameter values



## Using physical/mathematical constraints

- Power law series are more general than Taylor series, so we can approximate any analytic function (and some discontinuous ones) by using a large enough number of terms.
- However, we prefer to keep things as simple as possible:
  - Fewer power laws is computationally cheaper.
  - Fewer parameters means MCMC performs better.
  - Easier for humans to understand.
- We therefore rely on a few physical/mathematical constraints to specialize the power laws.
  - All microphysical processes exhibit certain scaling behaviors (e.g. average fall speeds) are intrinsic quantities, scaling symmetry of the stochastic collection equation).
  - Moments must correspond to a valid distribution, e.g. for a three-moment scheme, the variance in particle size must be positive.





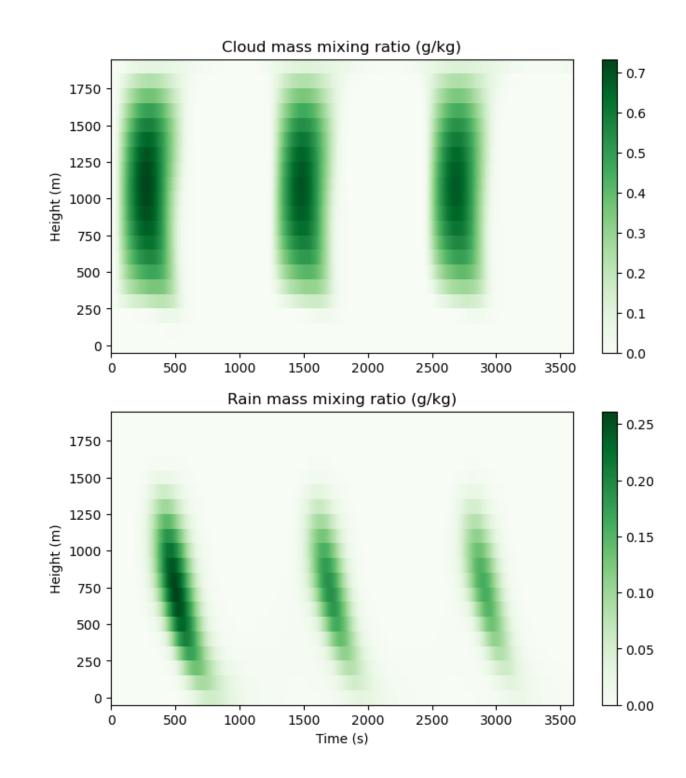
### **Emulating the TAU bin model**

- As a proof-of-concept to see how well BOSS handles complex microphysics problems, we developed BOSS emulators of the Tel Aviv University's bin model (TAU).
  - I.e. the TAU bin model output was used as a source of "observations".
- Emulation was of the liquid microphysics only.
- Focused on emulation of the non-precipitating and drizzling stratocumulus regimes in a 1-D kinematic driver.



# Bin model results in simulated driver

- Shown is cloud and rain mass over time for the strongest drizzling case.
- CCN = 10/cm<sup>3</sup> produces peak surface flux of ~0.25 mm/hr, so relatively "heavy" for drizzle.



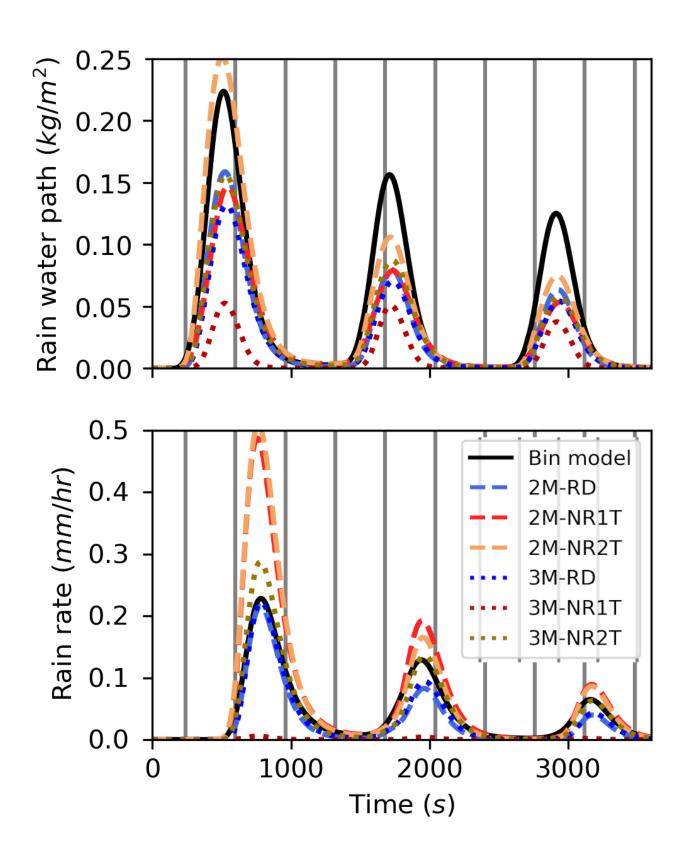


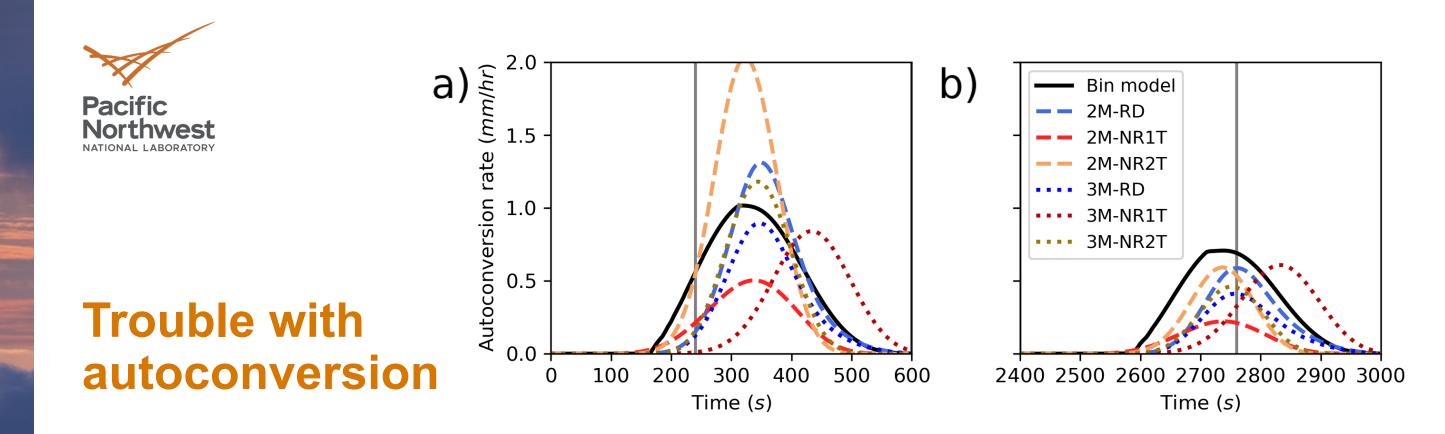
- Produced 6 different BOSS emulators.
- Half were standard two-moment schemes, like MG2 and P3 (labeled "2M").
- The other half used three moments for cloud, two moments for rain ("3M").
- For each number of moments, three different autoconversion formulas:
  - "NR1T" Single power law term, depends on cloud moments only.
  - "NR2T" Two power law terms, depends on cloud moments only
  - "RD" Two power law terms, one "initiation" or "triggering" term depending only on cloud moments, and one "continuation" or "tail" term depending also on rain.
- First versions of these schemes were tuned using a traditional "offline" method, which ignores time evolution of the system.
  - Treat moment values as "inputs" and bin model process rates as "outputs".
  - Simple regression problem: fit the process rate formulas to the data.



### Offline tuning struggles with rain

- All schemes perform fine for non-precipitating cloud, but struggle with rain.
- All tend to underestimate rain production.
- Surface rates are OK for 2M-RD, 3M-RD, and 3M-NR2T.
  - However, this is partly due to compensating errors; less drizzle produced, but also less evaporation than bin.





- Main problem for these schemes is capturing autoconversion.
  - Rates shown for (a) first oscillation, and (b) third oscillation of same run.
- Most schemes have peak autoconversion too late, comes on too slow.
  - Reduces overall rain production because accretion starts later.
  - Accretion/autoconversion ratio too high, so rain drops are too large.
- Schemes may be too sensitive to size of cloud drops.
  - Comparing oscillations with slightly larger drops (a) to slightly smaller drops (b), most BOSS schemes have a much larger change in autoconversion rate than bin model.



### Inference in a time-evolving context

- We know that fitting instantaneous process rates "offline" is insufficient.
  - Seifert and Rasp (2020): Neural networks that are highly accurate offline emulators of a superdroplet scheme are still worse than a two-decade-old "traditional" scheme at capturing timing of precipitation.
- In the real world, we can't directly observe most process rates for most moments anyway.
- What if we train BOSS using its performance in the 1-D driver instead?



### **Observations for time-evolving inference**

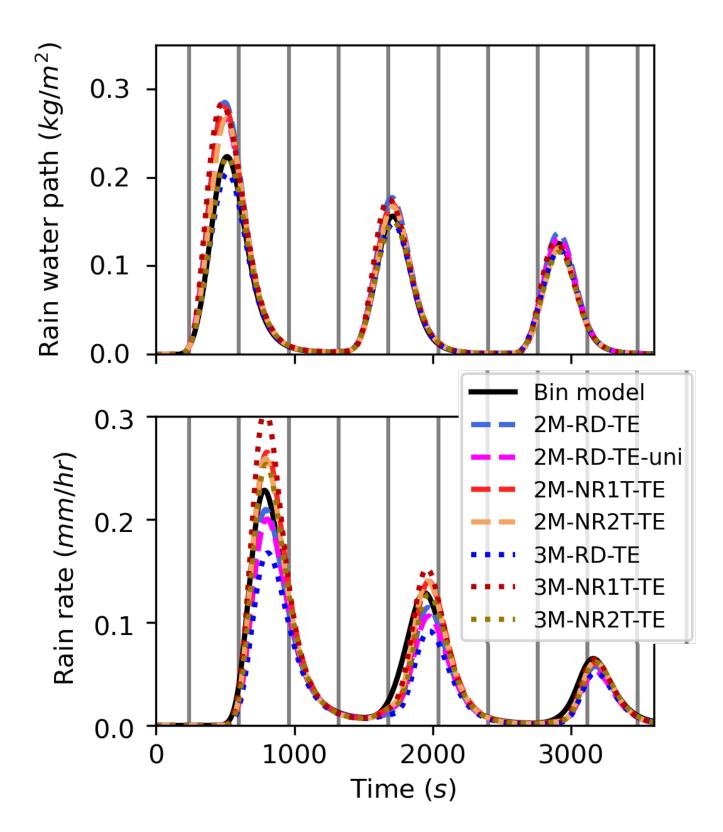
- We chose four vertical levels (evenly spaced 500m apart).
- We chose ten times (evenly spaced 6 min apart).
- At each time, we "observe":
  - All modeled cloud and rain moments at each of the chosen vertical levels.
  - Column-integrated liquid water path.
  - Total (cloud+rain) surface fluxes of mass and number.
- These observations are used to train new variants of the BOSS schemes (labeled "TE" schemes).
- Instantaneous process rates not used except to help define a (very weak) prior on parameter values.

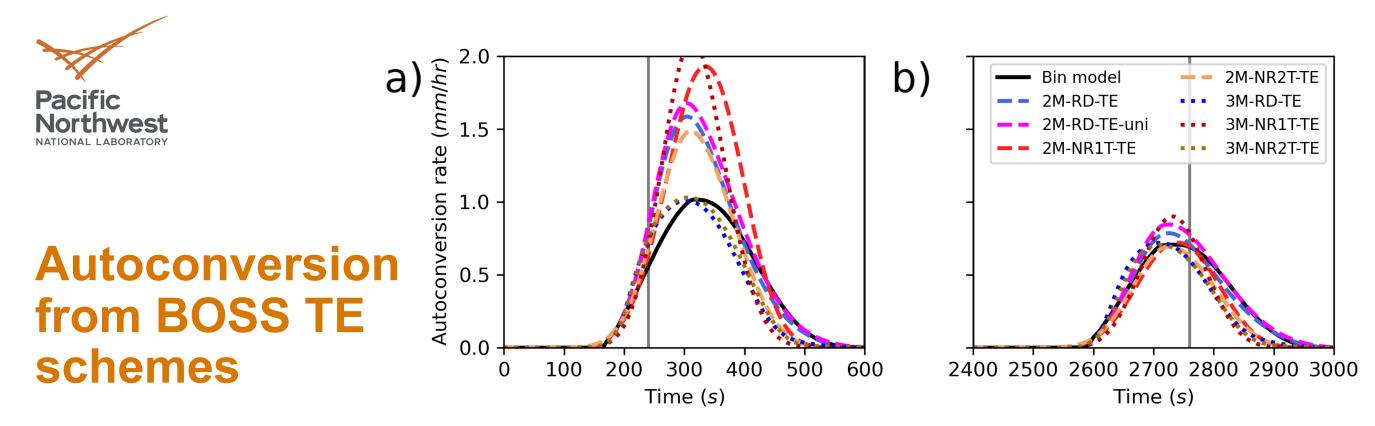




# Time-evolving fits are better for rain

- Improvement here is unsurprising; these schemes are directly optimized for these observations.
  - However, the overall accuracy of most schemes shows that structural uncertainty of BOSS is not too high.
- Pink curve is 2M-RD with uniform prior for parameters.
  - Mainly shows that choice of prior is not that important.



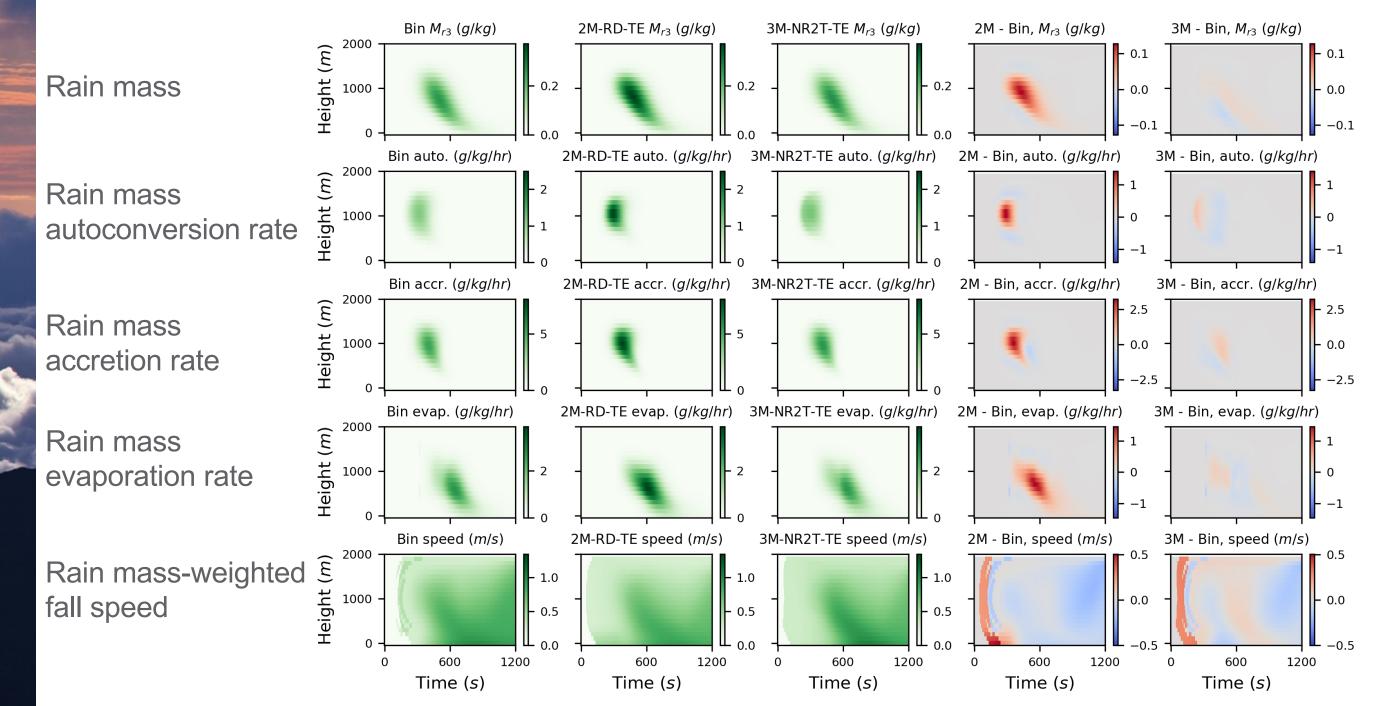


- The time-evolving regression has corrected the timing of autoconversion.
- 2M-\*-TE schemes and 3M-NR1T-TE are not flexible enough to perfectly represent every regime in our data set.
  - Some excessive drop size sensitivity remains, and causes too much autoconversion for the largest drop sizes.
- The 3M-2T-TE and 3M-RD-TE schemes match autoconversion very well.
  - These schemes were not tuned on the autoconversion rate!
  - Inferred correct process-level physics from observations of rain number/mass.
  - Observations are pretty sparse: grey lines show observation times.

### Rain process rates for TAU bin model and selected TE schemes

Pacific

Northwest NATIONAL LABORATOR





### **Remaining deficiencies of TE schemes**

- Two-moment BOSS is still not perfect at handling autoconversion.
  - Seifert and Rasp (2020): Predicting timing of autoconversion from two cloud moments may be inherently ill-posed in some regimes.
  - Igel et. al. (2022): Dividing the drop spectrum into disjoint "cloud" and "rain" categories makes it difficult to accurately capture activity at the cloud-rain boundary. So twocategory schemes are inherently disadvantaged for modelling collision-coalescence.
- Cloud number evaporation is difficult to model accurately.
  - This process is ignored by GCMs, though.
  - Hard because large "drizzle-like" cloud drops can coexist with small cloud drops.  $\checkmark$  Can be better represented with 3M schemes.
  - Occurs at very short time scales, so infrequent observations don't capture it well.
- Two-moment rain schemes cause excessive size sorting in sedimentation.
  - Need three rain moments, or at least more complex sedimentation formula.



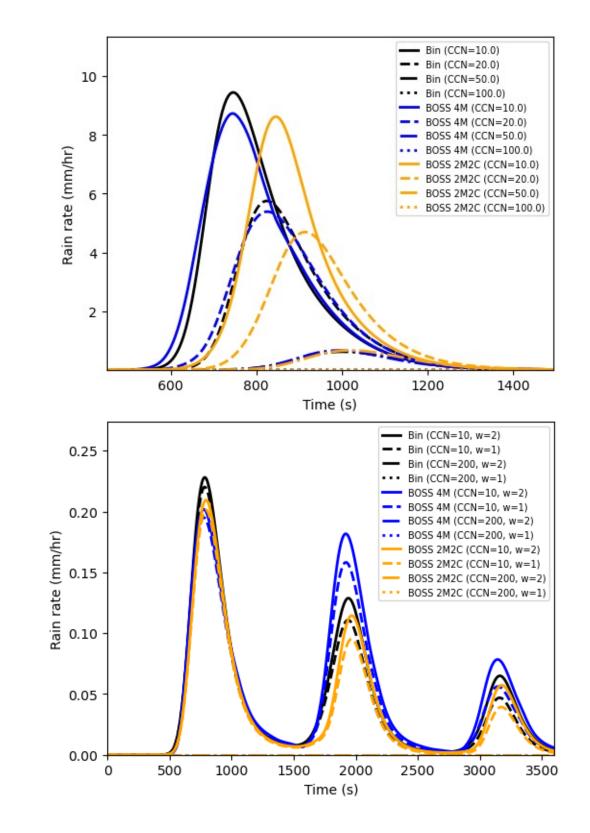


- Development of "single-category" BOSS (with no cloud/rain distinction)
  - First prototype has been created.
  - ESMD project for EAM implementation.
- Testing/developing BOSS in LES models
  - LES implemented in CM1 for single-category and two-category models.
- GCM adaptation
  - How to deal with
  - I.e., how do we handle GCM spatial/temporal resolutions?
- Adding ice!



### **Single-category BOSS**

- A single category scheme is expected to handle collision-coalescence better.
- Have developed prototype 4-moment scheme ("4M") using extended data set including heavy rain.
  - Also retrained 2M-RD-TE for comparison.
- 4M works better for heavier rain (top), but not a clear improvement when trained on original drizzling cases (bottom).
  - Probably possible to improve 4M further, but may also be some new issues, e.g. due to number evaporation difficulties.



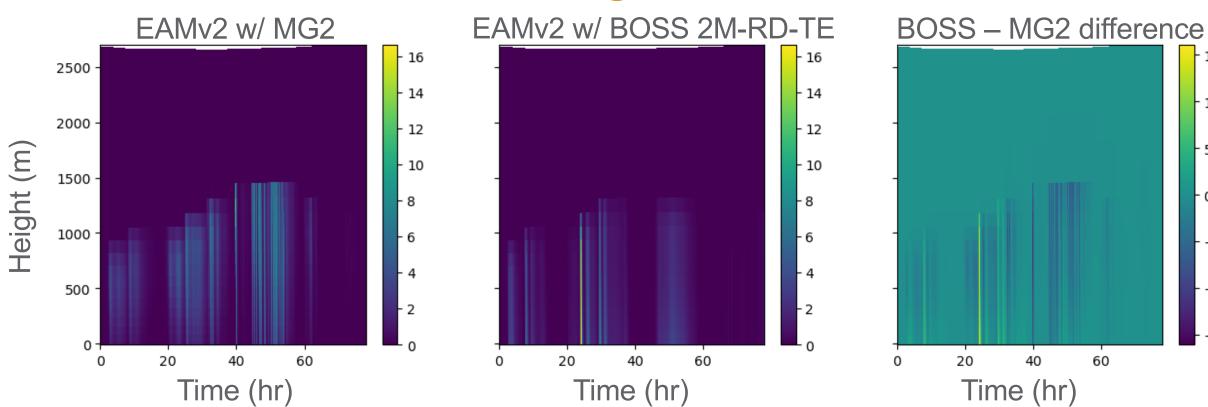


- Two-category (two-moment) and single-category BOSS implemented in the CM1 LES model.
  - Rapid recent progress from Kaitlyn Loftus (@ Columbia), Hugh, and Marcus.
- Current ESMD effort to train BOSS in an LES context.
  - LES is too expensive to run MCMC on directly.
  - Plan to produce an emulator using machine learning, as a proxy for the full LES.
- Goal is to produce an emulator in a context with more realistic drop size distribution and spatial variability than the 1-D model.
- LES data sets may also be useful for analyzing sub-grid-scale variability.
  - Necessary to account for this when adapting to climate model resolutions.



- It is not trivial to either increase the number of cloud moments, or move to single-category, in GCMs.
- Main difficulty: other cloud physics parameterizations (e.g. CLUBB) only deal with cloud mass.
  - They don't predict other moments!
- Open questions: Can we diagnose additional moments in a way that leads to improved accuracy in the microphysics? How?
  - Can we prognose more moments in CLUBB? What would that look like?

### **BOSS in EAM single column model**



Pacific

Northwest

- Comparison of rain mass flux in single column case for ARM MAGIC leg 15A.
  - Using non-standard options: 5s time step, mass gradient precipitation fraction.
- Rain much more intermittent using BOSS than MG2. (Probably good!)
- Rain drops are too big with no virga when using BOSS. (Very bad!)
- BOSS not expected to be realistic without accounting for SGS variability.

# -10-1560

15 - 10 - 5 - 0



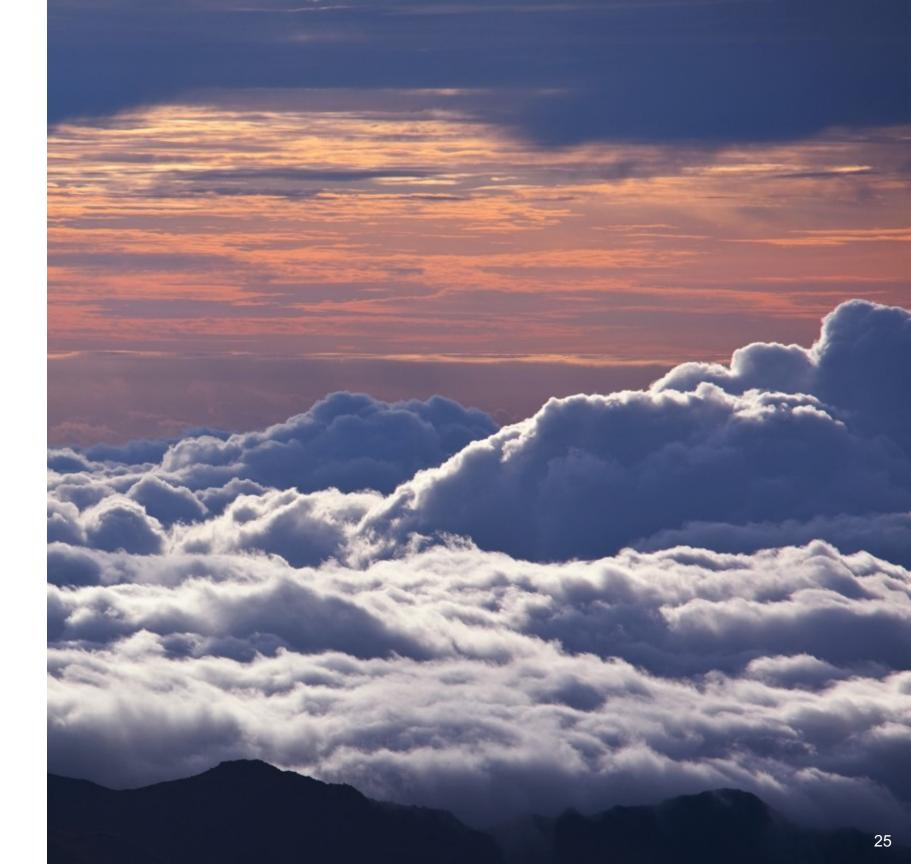
## **Adjusting to longer time steps**

- BOSS tests shown so far have used a 5 second time step.
  - On par with the time step used for sedimentation of rain in EAM.
  - Two orders of magnitude smaller than time step used for most other processes!
  - BOSS is probably cheaper than EAM's current microphysics, but 5s time step would still be expensive.
- The time resolution issue is not specific to BOSS.
  - Time integration of MG2 and P3 is not accurate for >1 minute time steps.
- New SciDAC-5 project "PAESCAL" is revising time integration and process coupling in E3SM.
  - Planning new microphysics coupler/integrator in C++.
  - Initial goal is to improve accuracy of time integration for P3.
  - However, software will allow new microphysics schemes to be "swapped in".



## Thank you

The bulk of this work was funded by the U.S. Department of Energy under grant DE-SC0021270, and performed at NASA GISS. Some data analysis and tests with E3SM coupling performed at PNNL as part of the PAESCAL SciDAC-5 project.







### **Overview**

- What is BOSS?
- Theoretical constraints on process rates
  - Scaling symmetry and "normalization"
  - Preserving valid moment combinations
- Results from emulating the TAU bin model:
  - Evaluation contexts: direct vs. time-evolving
  - What information is most useful for predicting autoconversion?
- Further steps:
  - Single-category liquid microphysics
  - BOSS in EAM



### Using physical/mathematical constraints

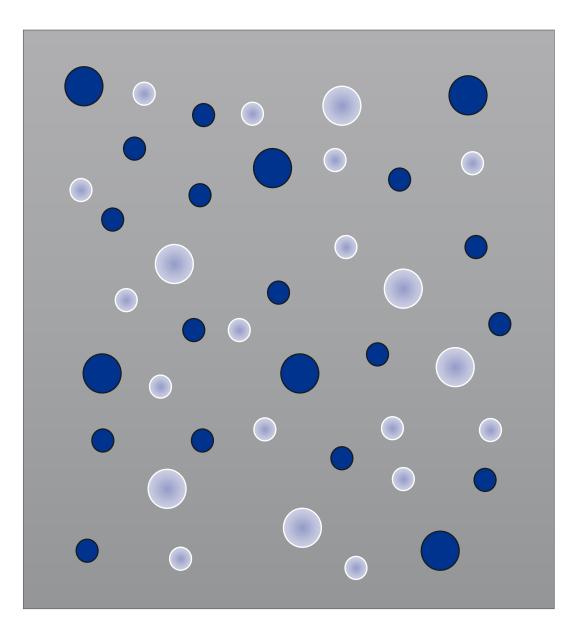
- Power law series are more general than Taylor series, so we can approximate any analytic function (and some discontinuous ones) by using a large enough number of terms.
- However, we prefer to keep things as simple as possible:
  - Fewer power laws is computationally cheaper.
  - Fewer parameters means MCMC performs better.
  - Easier for humans to understand.
- We therefore rely on a few physical/mathematical constraints to specialize the power laws.





### **Constraint I:** Scaling symmetries and normalization

- Take a volume of cloudy air and remove half the particles.
  - The shape of the DSD is the same, but with half the total number.
  - Average particle properties (e.g. fall speeds) will not change.
  - Interactions with environment (e.g. evaporation) will halve (linear scaling).
  - Collisional processes (e.g. accretion) will be reduced by  $\frac{1}{4}$  (quadratic scaling).
- Can use this to express processes as power laws of "normalized" moments.
  - Reduces the number of BOSS parameters.







### **Constraint II:** Valid moment combinations

- Since the DSD is positive, its moments cannot take on arbitrary values, but are subject to certain conditions.
- First condition: All moments must be positive  $(M_n > 0)$ .
  - Virtually all microphysics parameterizations obey this for sufficiently small time step.
  - At longer time steps, enforced by conservation limiters.
- Second condition: Monotonicity of moment ratios  $\left(\frac{M_{n+1}}{M_n} > \frac{M_n}{M_{n-1}}\right)$ 
  - Only applicable for schemes with three or more moments.
  - Equivalent to requiring measures of drop size to have positive standard deviation.
  - Multi-moment parameterizations sometimes ignore this condition or only enforce it using limiters.
  - For multi-moment BOSS, parameterizations chosen to respect this condition.
- (For a scheme with  $N_{mom}$  moments, there are  $\left|\frac{N_{mom}+1}{2}\right|$  applicable conditions.)



### **Emulating the TAU bin model:** A 1-D kinematic driver

- A simple 1-D kinematic driver produces non-precipitating or drizzling stratocumulus based on input forcing parameters.
  - Vertical velocity prescribed as simple sinusoidal oscillations over time.
  - An constant "latent heat flux" forcing was applied to all levels.
  - Cloud condensation nuclei (CCN) held constant, with Twomey droplet activation.
  - No other parameterizations active (i.e. no radiation, turbulence, etc.).
- Uniform 20-level vertical grid with model top of 2 km (i.e.  $\Delta z=100$  m).
- Eight different runs produced:
  - Simulations run for 1 hour with 20 minute oscillation period.
  - Oscillation amplitude, latent heat flux, and CCN concentration were varied.
- Moments and process rates written out at every vertical level and time step.