
A short introduction to the MPAS
framework

Matt Hoffman
5/16/2022

MPAS History

● Spearheaded by Todd Ringler (LANL) and
Bill Skamrock (NCAR) following development of
TRSK discretization scheme for
geophysical fluids (2010)

● Vision: shared framework for building geophysical
fluid models using unstructured, global, variable resolution Voronoi grids

● Initially: MPAS-Shallow Water, MPAS-Ocean (LANL), MPAS-Atmosphere
(NCAR)

● Later: MPAS-Seaice, MPAS-Land Ice (now MALI)

MPAS Repository history

● Original svn repo: https://github.com/MPAS-Dev/MPAS-Legacy
○ First commit: Mar 4, 2010

● First git repo (originally private): https://github.com/MPAS-Dev/MPAS
○ I believe contains all the svn history

● Second git repo (entirely public): https://github.com/MPAS-Dev/MPAS-Model
○ Continuous git history with previous repo
○ Was a git submodule within E3SM (main motivation for going public)

● E3SM repo: https://github.com/E3SM-Project/E3SM
○ Transitioned May 17, 2021
○ Older history not accessible - refer to previous repo
○ Framework (including standalone Makefile) as a ‘component’ at:

components/mpas-framework/
○ MPAS-Ocean, MPAS-Seaice, MPAS-Albany-Land Ice each have separate components
○ MALI development primarily in a fork: https://github.com/MALI-Dev/E3SM

https://github.com/MPAS-Dev/MPAS-Legacy
https://github.com/MPAS-Dev/MPAS
https://github.com/MPAS-Dev/MPAS-Model
https://github.com/E3SM-Project/E3SM

MPAS Framework history

● Shared framework for data structures, mesh operations, parallelization, i/o, configuration
parsing, timekeeping, physics-agnostic operations

● Primary authors:
○ Doug Jacobsen (LANL, now at Google)
○ Michael Duda (NCAR)

● Desire to make use of modern software features (templating, operator overloading, classes)
but still use Fortran due to familiarity for domain experts

○ → many custom implementations, resulting in challenges for long term maintenance, ‘unusual’ Fortran code,
mixed language code, etc.

● Desire to be very general - features any geophysical ‘core’ could use
○ → some features are overly general for any given physics application and perhaps more cumbersome than

necessary for a specific application
● Currently in Framework:

○ 72,781 lines of Fortran code
○ 1845 lines of include files
○ 9554 lines of C code

Documentation

● Original documentation repo:
https://github.com/MPAS-Dev/MPAS-Documents

● User’s Guide:
https://github.com/MPAS-Dev/MPAS-Documents/tree/master/users_guide

● Developer’s Guide (Nov. 2013):
https://github.com/MPAS-Dev/MPAS-Documents/blob/master/developers_gui
de/MPAS-DevelopersGuide.pdf

● Framework design documents:
https://github.com/MPAS-Dev/MPAS-Documents/tree/master/shared

https://github.com/MPAS-Dev/MPAS-Documents
https://github.com/MPAS-Dev/MPAS-Documents/tree/master/users_guide
https://github.com/MPAS-Dev/MPAS-Documents/blob/master/developers_guide/MPAS-DevelopersGuide.pdf
https://github.com/MPAS-Dev/MPAS-Documents/blob/master/developers_guide/MPAS-DevelopersGuide.pdf
https://github.com/MPAS-Dev/MPAS-Documents/tree/master/shared

Framework structure
components/mpas-framework/src

Standalone driver. E3SM uses a different version
Libraries that are built in dependencies. Rarely touched

Frozen version of ESMF timekeeper
XML parser for streams
Basic MPAS functionality
Useful algorithms that are not core-specific (e.g. geometric operations)
Framework that is not part of MPAS executable - preprocessing

Tool to generate default namelist & streams files
Parser of Registry files (includ. conversion to Fortran code)

Registry:
● XML file defining model dimensions, namelist options,

stream definitions, variables
● parser converts to Fortran (and some C) code

Data structures:

● var_struct - grouping of model variables

○ Var_array

■ Var

Registry

Allowable attributes defined in: src/tools/registry/Registry.xsd

● dimensions
● nml records & options
● streams
● var_structs , var_arrays, vars

○ name
○ type
○ dimensions
○ name_in_code
○ units
○ description
○ default_value
○ persistence
○ packages
○ (time_levs, array_group)

Data structures
Internal MPAS code:

Data structures: Internal MPAS code: ‘pools’
● similar to a class/derived type

○ each data structure has attributes and methods,
child members, etc.

○ implemented from scratch with a lot of linked lists
○

define pointer variables
as destinations for pools
retrievals

mpas_pool_get_subpool to retrieve structs

mpas_pool_get_config to retrieve nl options

mpas_pool_get_array to retrieve actual arrays

Notes:
● pool routines are case sensitive even though Fortran

is not!
● typos/faulty retrievals commands cannot be detected

at compile time, only at run time! (major limitation of
the pools data structure)

● Compiling with DEBUG=true necessary to get useful
error message

mpas_pool_types.inc

mpas_field_types.inc

src/framework
● .F -> code
● .inc -> derived type definitions

MPAS Timekeeping

● xtime is most fundamental time variable
○ string of format: ‘YYYY-MM-DD_hh:m:ss’

● cores have defined something like ‘daysSinceStart’ as a real variable but not
actually used by framework

● MPAS_Time_type (ESMF_Time) used for most actual time operations
● MPAS wraps and old, frozen version of ESMF timekeeper

○ (E3SM might use a more current version?)
○ handles Y,M,D,h,m,s, including different calendars (e.g. leap years) and overloaded

mathematic operators
○ concept of ‘time’, ‘interval’
○ concept of ‘clock’, ‘alarm’
○ Addition of a CF compliant time variable may require adjusting timekeeping routines (or

possibly updating the version of the ESMF timekeeper?)

mpas_timekeeping_types.inc mpas_timekeeping.F

