


What are secondary organic aerosols (SOA)?
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Primary organic aerosol (POA): Directly emitted

Secondary organic aerosol (SOA): Formed by
chemical reactions of volatile organic
compounds (VOCs) and gas to particle
conversion of products

Each SOA particle is made of thousands of
organic compounds

SOA is ubiquitous in the atmosphere

SOA is a vital link connecting natural,
anthropogenic and wildfire emissions to
aerosols, radiation and clouds




Aerosol Mass Spectrometer (AMS) measurements around ol

the world: SOA (green) is ubiquitous
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» In the Northern Hemisphere
SOA concentrations are
similar to or greater than

sulfate

Jimenez et al. 2009, Science




IPCC Radiative forcing bar chart: Does not include SOA Pacific m
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» Organic carbon (OC) radiative forcing is -0.3 Wm-2

» SOA not included because formation depends on variety
of uncertain factors

» There is tremendous complexity and uncertainty in the
processes involved in SOA formation (IPCC, 2013)
Myhre et al. 2013, IPCC Fifth Assessment

o

» SOA could change global cloud forcing by ~20% with
large regional variations




Anthropogenic emissions interact with biogenic VOCs through =~
atmospheric chemistry making SOA et
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Chemical oxidation reactions can be both sources and sinks : ~

Adding functional groups, or fragmenting carbon backbone e e

Decreasing volatility
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Southeast USA field measurements show monoterpene i
fragmentation products increase with aglng in presence of NOx 07000
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Photolysis is an important sink of SOA found by laboratory ol

measurements S e

Mass loading (wgm )

UV light
AN » |soprene SOA decreases by
upto 80% within 10-12 hours

> . upon exposure to UV light in
O PNNL smog chamber
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New SOA model developments in E3SM Pacific Northwest F,,,.,.,_,,
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» Parameterize multigenerational gas-phase chemistry of thousands of
organic compounds with a few lumped species with the volatility basis-
set (VBS) approach

» SOA precursors are from biogenic, biomass burning and energy-related
emissions

» Included fragmentation reactions in addition to functionalization

k
» Included particle-phase oligomerization and photolysis of SOA

I I I I I ) Volatilities of thousands of organic compounds
represented by fixed decadal intervals (VBS)

Volatility




Making SOA treatments computationally efficient Pacific Northwest
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» Added 8 gas-phase species to explicitly simulate multigenerational chemistry of SOA precursors

» At each time step gas-particle partitioning is calculated dynamically between semi-volatile gases and
particle phase species within the MAM4 modes

» At the end of the time step all SOA particle-phase species are lumped together as a single non-
volatile species assumed to be form oligomers within the particle

» Only a single %OA species is advected in each mode thus reducing the number of transported
particle-phase species

» All SOA sources biogenic, biomass burning and fossil-related are lumped together

» This results in considerable computational savings compared to our previous implementation in
CESM (Shrivastava et al. 2015)




Particle-phase photolysis is an important sink of SOA P
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Lou, Shriv.ﬁsfava et al. 2020, JAMES

» Particle-phase photolysis decreases SOA by 30-50% over source regions
» Stronger (80-90%) decreases are seen over remote oceanic regions and high altitudes




Photolysis is an important sink of SOA needed to explain
aircraft measurements mainly above 5km altitude
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g Ocean i » Including photolysis improves simulated SOA vertical profiles
significantly compared to Atom2016 aircraft measurements
» At high altitudes (above 5 km), wet removal is not efficient

» Photolysis is needed to explain observations at high altitudes




Photolysis decreases CCN more strongly at high altitudes
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» Photolysis decreases CCN concentrations by 10-30% near surface and 50-70% at high altitudes




Satellite AOD over African biomass burning outflow dominated

by organic aerosols: SOA model evaluation

Satellite obs.
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Stronger SOA source
(low fragmentation)
and a strong sink
(photolysis) needed to
explain both absolute
AOD and

Outflow/Source AOD
ratios




Simulated SOA direct radiative forcing at the top of atmosphere ... noi

c Northwest
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» DRF of SOA when photolysis is turned off is -0.4 W m2
» Photolysis decreases DRF of SOA by a factor of 4
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Key Takeaways and Modeling Implications Pacifc RO e =
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» We developed a computationally efficient framework that enables explicit coupling of SOA processes
with energy and land use changes
&

» Both stronger SOA sources (functionalization) and stronger sinks (photolysis) needed to explain SOA
distributions

» Vertical profiles of SOA measured by aircraft are key to constraining SOA processes in models
» Satellite AOD in regions dominated by biomass burning provides valuable constraints

» PD-PI effective radiative forcing of SOA decreases by a factor of four from -0.4 to -0.1 W m* when we
include the photolysis of SOA

» Accurately representing key SOA chemical processes in global models is essential for understanding
their interactions with clouds and radiative forcing




Ongoing and Potential Future Developments Pacific Northwest

Froeliy @ dpniisad Tey BARCEE S W

» Currently ongoing as part of NGD atmospheric physics: Coupling new SOA treatments to E3SM-
MOSAIC that includes nitrate aerosols in addition to sulfate

Other Potential developments (depending on support/approval):
» Include the treatment of phase state of SOA (solid, liquid, glassy)

» Phase state affects both SOA formation and cloud microphysical properties, not included in current
models

» Represent interactions between sulfate and SOA chemistry in aqueous aerosols and clouds

» Treat light absorbing components of SOA (brown carbon) and evaluate their role in aerosol-radiation
and aerosol-cloud interactions




