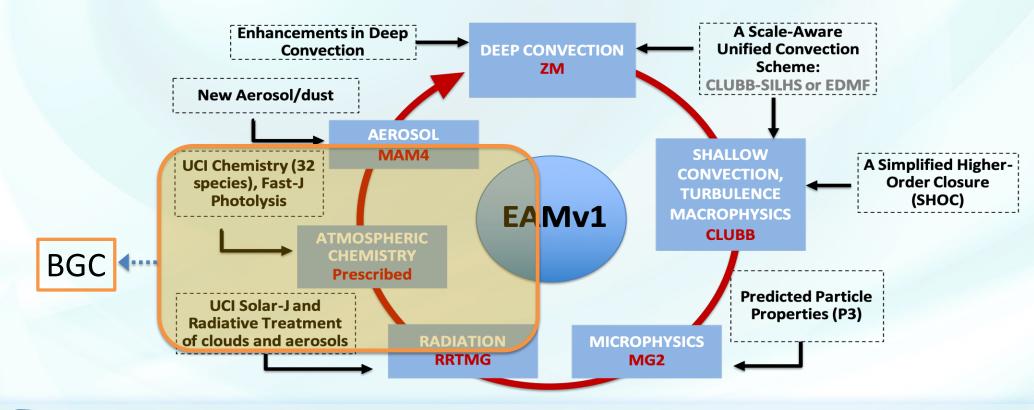



# Interactive chemistry for E3SM: capabilities and initial results

Qi Tang (LLNL)
Michael Prather (UCI), Juno Hsu (UCI)
Philip Cameron-Smith (LLNL)

E3SM BGC webinar, May 25, 2021


Acknowledgments: E3SM team; Compy & NERSC computing resources



ENERGY

# **NGD-Atmospheric Physics for E3SMv3**

Goals: 1) Reduce model errors in v1/v2; 2) Enhance model capability for future climate projections







# **Atmospheric chemistry and radiation**

Ability to project future GHGs (CH<sub>4</sub>, N<sub>2</sub>O, O<sub>3</sub>) based on emission scenarios and climate change by implementing the UC Irvine (UCI) chemistry mechanism

Support BGC and aerosol chemistry including short-lived climate forcers

### Starting point

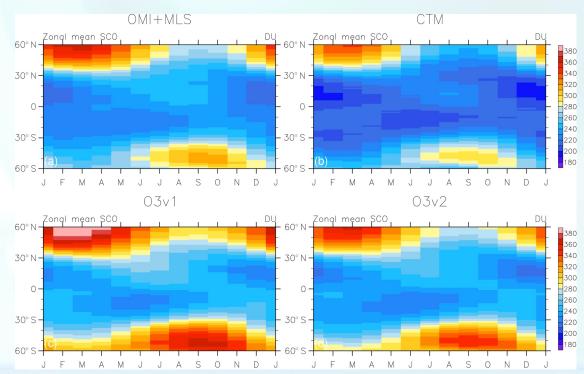
E3SMv1 chemistry (O3v1)

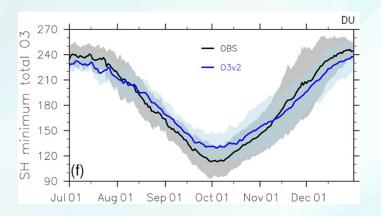
- Strat: linearized interactive ozone (Linoz v2); Trop: prescribed oxidants for aerosols
- Misses tropopause (TPP) variability, esp. at the jet.

E3SMv2 chemistry (O3v2) (Tang et al., 2021)

- Trop O<sub>3</sub> becomes a passive tracer with lower boundary sink.
- Maintains the naturally sharp O<sub>3</sub> gradient across TPP
- Able to diagnose stratosphere troposphere exchange (STE) of ozone







# **Recent E3SM publications**

#### Evaluation of the interactive stratospheric ozone (O3v2) module in the E3SM version 1 Earth system model

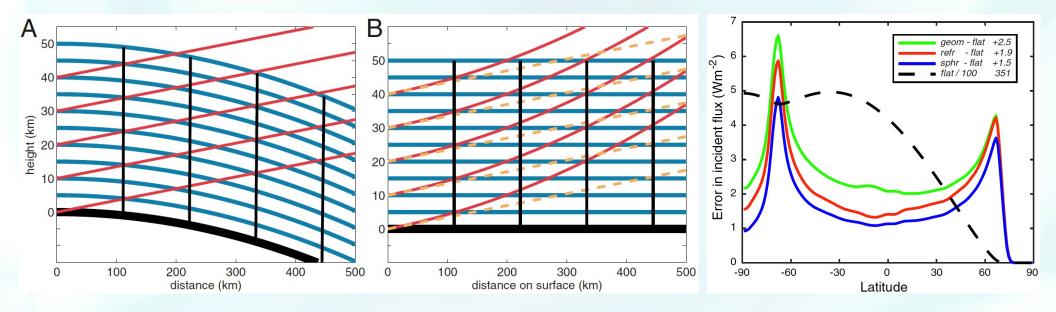
Qi Tang<sup>1</sup>, Michael J. Prather<sup>2</sup>, Juno Hsu<sup>2</sup>, Daniel J. Ruiz<sup>2</sup>, Philip J. Cameron-Smith<sup>1</sup>, Shaocheng Xie<sup>1</sup>, and Jean-Christophe Golaz<sup>1</sup>

Geosci. Model Dev., 14, 1219–1236, 2021 https://doi.org/10.5194/gmd-14-1219-2021





Stratospheric column ozone (SCO) is reasonably captured by Linoz v2, including the Antarctic ozone hole.






# A round Earth for climate models

Michael J. Prather<sup>a,1,2</sup> and Juno C. Hsu<sup>a,1</sup>

**19330–19335** | PNAS | **September 24, 2019** | vol. 116 | no. 39 www.pnas.org/cgi/doi/10.1073/pnas.1908198116



- Flat atmosphere approximation leads to regional errors in solar heating at rates comparable to the climate forcing by greenhouse gases and aerosols.
- Included in the Fast-J code in E3SM (not enabled for radiation transfer)





# Assessing Uncertainties and Approximations in Solar Heating of the Climate System

Juno C. Hsu<sup>1</sup> and Michael J. Prather<sup>1</sup>

JAMES | Journal of Advances in Modeling Earth Systems 10.1029/2020MS002131

### Assessment of errors and uncertainties in solar heating codes with recommendations

**Table 1**Errors in the Three Primary Components of the Solar Radiation Budget (Reflected Sunlight, Atmospheric Absorption, Surface Absorption in W  $m^{-2}$ ) for a Range of Approximations in the Radiative Transfer Models

|                                                                                            |        |                       | Mean difference (Wm <sup>-2</sup> ) |       |       | RMS difference (Wm <sup>-2</sup> ) |      |       |
|--------------------------------------------------------------------------------------------|--------|-----------------------|-------------------------------------|-------|-------|------------------------------------|------|-------|
| row                                                                                        | Models | Error being estimated | refl.                               | Atm.  | Surf. | refl.                              | Atm. | Surf. |
| Spectroscopy errors for infrared and visible gas absorption with clear sky                 |        |                       |                                     |       |       |                                    |      |       |
| R1                                                                                         | B1-B0  | SJ/CLIRAD v. SJ       | +0.94                               | -5.68 | +4.73 | 1.4                                | 8.4  | 7.0   |
| R2                                                                                         | B2-B0  | SJ/LLNL v. SJ         | +0.53                               | -7.66 | +7.13 | 1.2                                | 12.0 | 11.0  |
| R3                                                                                         | В3-В0  | SJ/RRX v. SJ          | +0.03                               | -0.24 | +0.21 | 0.0                                | 0.4  | 0.3   |
| R4                                                                                         | RR0-B0 | AER4.0 v. SJ          | +1.30                               | -0.47 | -0.82 | 1.9                                | 0.8  | 1.4   |
| R5                                                                                         | B4-B0  | SJ/hrv v. SJ          | +0.34                               | -0.46 | +0.12 | ) <del>-</del>                     | -    | -     |
| R6                                                                                         | B5-B0  | SJ/2S versus SJ       | +0.31                               | -0.53 | +0.22 | 0.4                                | 0.4  | 0.2   |
| Wavelength resolution of cloud absorption (MAX-COR overlap and QCAs, no IR gas absorption) |        |                       |                                     |       |       |                                    |      |       |
| R7                                                                                         | C1-C0  | SJ/CLIRAD v. SJ/66b   | -2.14                               | +3.85 | -1.70 | 8.7                                | 10.4 | 3.1   |
| R8                                                                                         | C2-C0  | SJ/RRTM v. SJ/66b     | -1.14                               | +1.68 | -0.51 | 2.2                                | 3.2  | 1.1   |
|                                                                                            |        |                       |                                     |       |       |                                    |      |       |

# **Current status (ongoing work)**

### Implemented on E3SM GitHub branches

- Interactive chemistry ready to link with BGC and aerosols
  - Strat: Linoz v3; Trop: chemUCI
  - BGC methane experiment and other scientific applications
- Fast-J photolysis rates
  - Replace the look-up table and is coupled with the super-fast chemistry





# E3SMv3 tracers and reactions

Fast interactive chemistry: ~12 SYPD on 30 compy nodes (~8% additional cost)

**CH2O** 

NO

NO<sub>2</sub>

**CH3OO** 

CH3OOH

Trop: chemUCI

**C2H6** 

**C3H8** 

**C2H4** 

ROHO2

(C2H5O3)

Strat: Linoz v3

| O3LNZ  |  |
|--------|--|
| CH4LNZ |  |
| N2OLNZ |  |
| NOYLNZ |  |

Identify TPP: E90

 Reactions: https://github.com/E3SM-Project/E3SM/blob/tangq/atm/UCIchem/components/eam/chem\_proc/inputs/ pp\_chemUCI\_linozv3\_mam4\_resus\_mom\_so ag\_tag.in

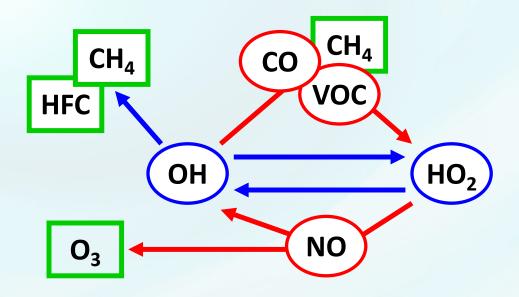
| O3   | NO3  | C2H5O2      |
|------|------|-------------|
| ОН   | N2O5 | С2Н5ООН     |
| CH4* | HNO3 | СНЗСНО      |
| HO2  | PAN  | СНЗСОЗ      |
| H2O2 | СО   | ISOP (C5H8) |

ISOPO2

CH3COCH3

**MVKMACR** 

MVKO2 (C4H7O4)


(Methyvinylketone & Methacrolein)





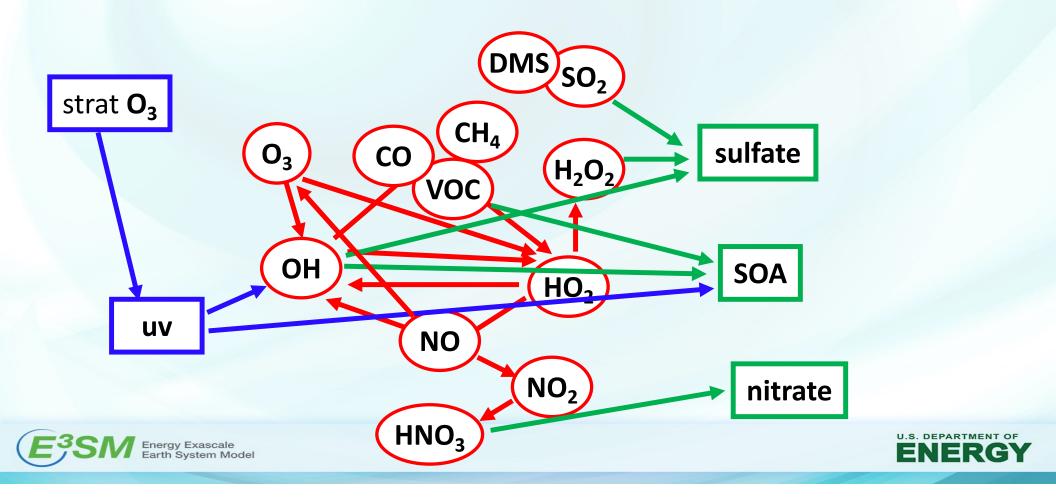
### E3SM and chemUCI

How do tropospheric pollutants interact with greenhouse gases?



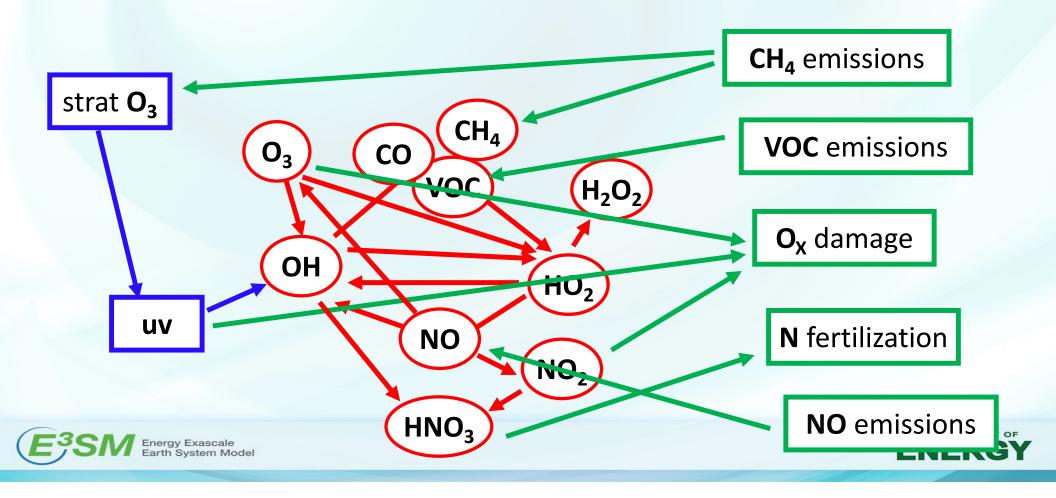
CO, VOC, NO<sub>X</sub> (=NO+NO<sub>2</sub>), & CH<sub>4</sub> control

**Tropospheric Chemistry (OH, HO<sub>2</sub>)** 


which is the sink for CH<sub>4</sub> & HFCs; the source for O<sub>3</sub>

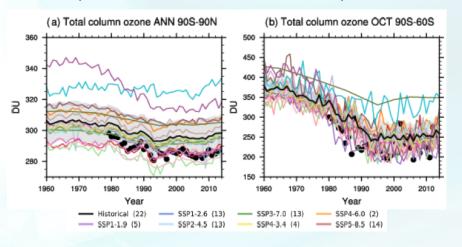





### E3SM and chemUCI and Linoz v3

How does stratospheric & tropospheric chemistry interact with aerosols?

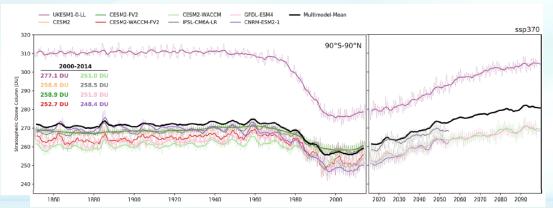



### E3SM and chemUCI and Linoz v3

How does stratospheric/tropospheric chemistry interact with BGC?



- What drives chemUCI + Linoz v3 design
- E3SM capability

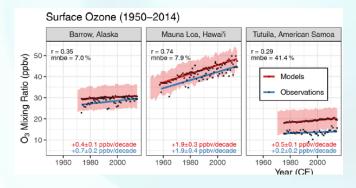

#### Compare Ozone Column with obs. depletion



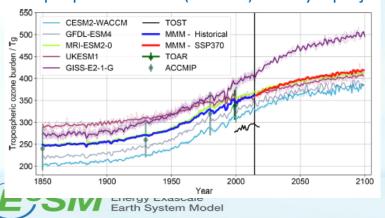
# **Evaluating stratospheric ozone and water vapour changes in CMIP6 models from 1850 to 2100**

James Keeble<sup>1,2</sup>, Birgit Hassler<sup>3</sup>, Antara Banerjee<sup>4,5</sup>, Ramiro Checa-Garcia<sup>6</sup>, Gabriel Chiodo<sup>7,8</sup>, Sean Davis<sup>4</sup>, Veronika Eyring<sup>3,9</sup>, Paul T. Griffiths<sup>1,2</sup>, Olaf Morgenstern<sup>10</sup>, Peer Nowack<sup>11,12</sup>, Guang Zeng<sup>10</sup>, Jiankai Zhang<sup>13</sup>, Greg Bodeker<sup>14,15</sup>, Susannah Burrows<sup>16</sup>, Philip Cameron-Smith<sup>17</sup>, David Cugnet<sup>18</sup>, Christopher Danek<sup>19</sup>, Makoto Deushi<sup>20</sup>, Larry W. Horowitz<sup>21</sup>, Anne Kubin<sup>22</sup>, Lijuan Li<sup>23</sup>, Gerrit Lohmann<sup>19</sup>, Martine Michou<sup>24</sup>, Michael J. Mills<sup>25</sup>, Pierre Nabat<sup>24</sup>, Dirk Olivié<sup>26</sup>, Sungsu Park<sup>27</sup>, Øyvind Seland<sup>26</sup>, Jens Stoll<sup>22</sup>, Karl-Hermann Wieners<sup>28</sup>, and Tongwen Wu<sup>29</sup>

# Stratospheric Ozone Column: history + projections as indicator of stratospheric climate change



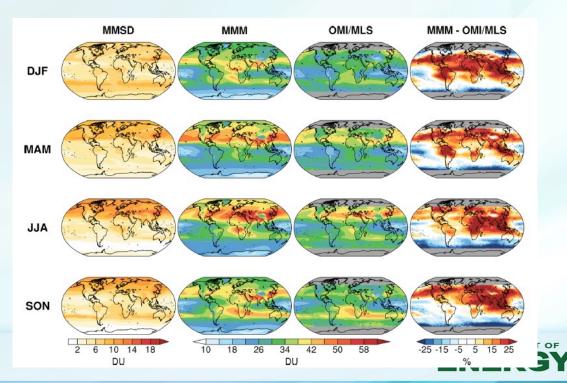



- What drives chemUCI + Linoz v3 design
- E3SM capability

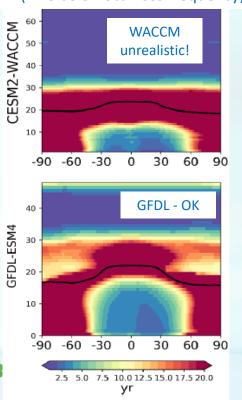
#### **Surface Ozone Trends**




#### Tropospheric Ozone (burden) history + projection



#### Tropospheric ozone in CMIP6 simulations

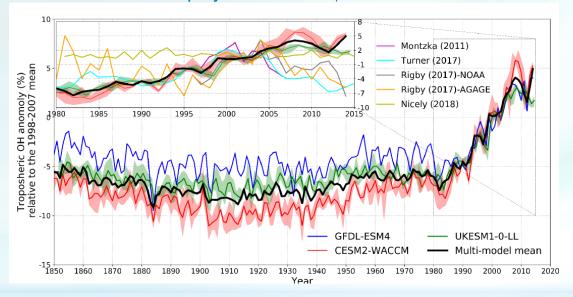

Paul T. Griffiths<sup>1,2,★</sup>, Lee T. Murray<sup>3,★</sup>, Guang Zeng<sup>4</sup>, Youngsub Matthew Shin<sup>1</sup>, N. Luke Abraham<sup>1,2</sup>, Alexander T. Archibald<sup>1,2</sup>, Makoto Deushi<sup>5</sup>, Louisa K. Emmons<sup>6</sup>, Ian E. Galbally<sup>7,8</sup>, Birgit Hassler<sup>9</sup>, Larry W. Horowitz<sup>10</sup>, James Keeble<sup>1,2</sup>, Jane Liu<sup>11</sup>, Omid Moeini<sup>12</sup>, Vaishali Naik<sup>10</sup>, Fiona M. O'Connor<sup>13</sup>, Naga Oshima<sup>5</sup>, David Tarasick<sup>12</sup>, Simone Tilmes<sup>6</sup>, Steven T. Turnock<sup>13</sup>, Oliver Wild<sup>14</sup>, Paul J. Young<sup>14,15</sup>, and Prodromos Zanis<sup>16</sup>

# Tropospheric Column Ozone (2005-2014) MMM = multi-model mean



- What drives chemUCI + Linoz v3 design
- E3SM capability

# Present Day CH<sub>4</sub> lifetime (inverse of local loss frequency)

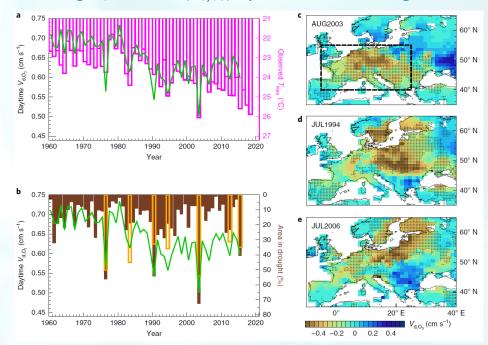



# Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP

David S. Stevenson<sup>1</sup>, Alcide Zhao<sup>1</sup>, Vaishali Naik<sup>2</sup>, Fiona M. O'Connor<sup>3</sup>, Simone Tilmes<sup>4</sup>, Guang Zeng<sup>5</sup>, Lee T. Murray<sup>6</sup>, William J. Collins<sup>7</sup>, Paul Griffiths<sup>8,9</sup>, Sungbo Shim<sup>10</sup>, Larry W. Horowitz<sup>2</sup>, Lori Sentman<sup>2</sup>, Louisa Emmons<sup>4</sup>

#### Tropospheric mean OH anomalies (related to CH<sub>4</sub> lifetime)

- observations for 1980-2020
- will need projections for CH<sub>4</sub> and HFCs








- What drives chemUCI + Linoz v3 design
- E3SM capability

#### Declining O<sub>3</sub> removal (V<sub>d,O3</sub>) by water-stressed vegetation



V<sub>depostion of O3</sub> drops from 0.7 cm/s to 0.5 cm/s during droughts and heatwaves



nature climate change

ARTICLES https://doi.org/10.1038/s41558-020-0743-y

Check for updates

# Vegetation feedbacks during drought exacerbate ozone air pollution extremes in Europe

Meiyun Lin<sup>®</sup> <sup>1,2</sup> <sup>∞</sup>, Larry W. Horowitz<sup>®</sup> <sup>2</sup>, Yuanyu Xie<sup>®</sup> <sup>1,2</sup>, Fabien Paulot<sup>®</sup> <sup>2</sup>, Sergey Malyshev<sup>®</sup> <sup>2</sup>, Elena Shevliakova<sup>®</sup> <sup>2</sup>, Angelo Finco<sup>®</sup> <sup>3</sup>, Giacomo Gerosa<sup>®</sup> <sup>3</sup>, Dagmar Kubistin<sup>®</sup> <sup>4</sup> and Kim Pilegaard<sup>®</sup> <sup>5</sup>

Reducing surface ozone to meet the European Union's target for human health has proven challenging despite stringent controls on ozone precursor emissions over recent decades. The most extreme ozone pollution episodes are linked to heatwaves and droughts, which are increasing in frequency and intensity over Europe, with severe impacts on natural and human systems. Here, we use observations and Earth system model simulations for the period 1960-2018 to show that ecosystem-atmosphere interactions, especially reduced ozone removal by water-stressed vegetation, exacerbate ozone air pollution over Europe. These vegetation feedbacks worsen peak ozone episodes during European mega-droughts, such as the 2003 event, offsetting much of the air quality improvements gained from regional emissions controls. As the frequency of hot and dry summers is expected to increase over the coming decades, this climate penalty could be severe and therefore needs to be considered when designing clean air policy in the European Union.

#### Leads to worse ozone pollution over Europe: climate penalty on ozone extremes (ppb/K) with interactive vegetation

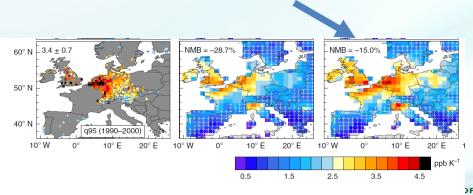
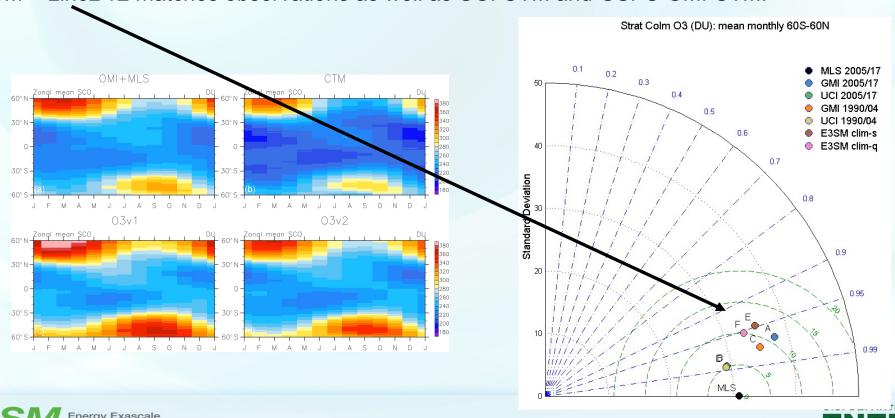
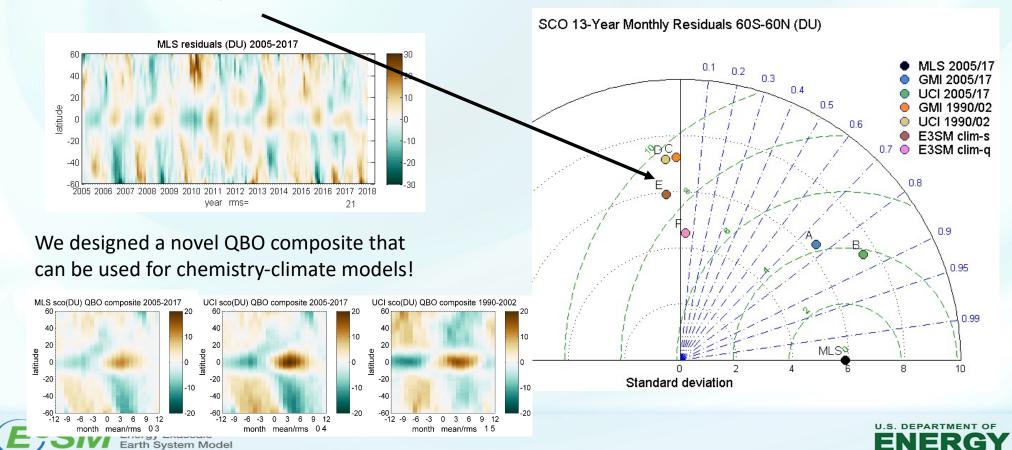



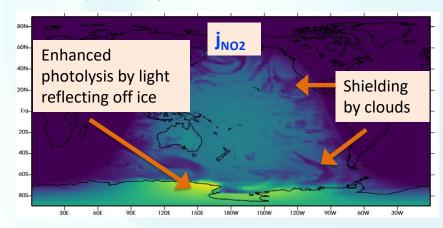

Fig. 6 | Ecosystem-atmosphere interactions exacerbate climate penalty on ozone extremes. a-d, The top row of ma

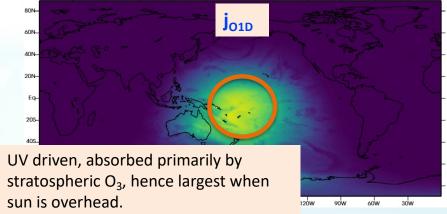
Stratospheric Column Ozone (SCO):


E3SM + Linoz v2 matches observations as well as UCI CTM and GSFC GMI CTM.






#### Stratospheric Column Ozone (SCO):


E3SM + Linoz v2 (climate model) *cannot* match interannual as well as UCI CTM and GSFC GMI. It fails in the same way as UCI and GMI do when sampled for different decade



# Fast-J implemented and coupled to photochemistry

Lat-lon maps January 2 00:00Z, Instantaneous





#### Fast-J is a huge improvement over lookup table.

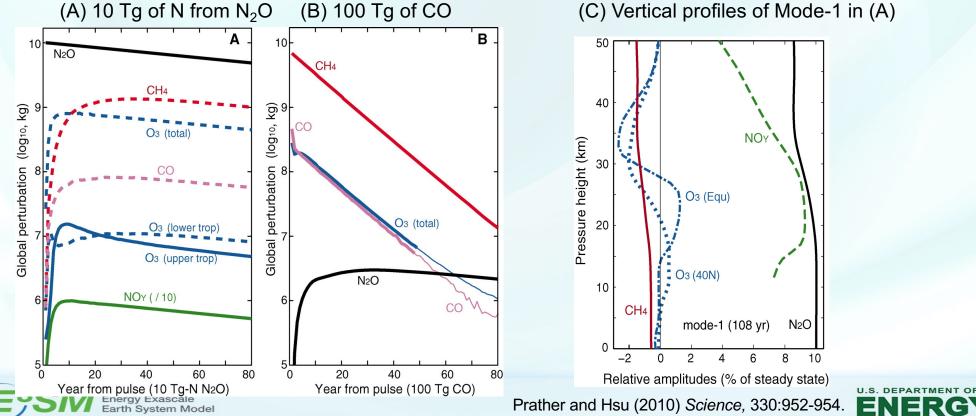
- Removes lookup table biases in E3SM (Superfast chemistry)
- Consistent treatment with options for overlapping clouds
- Aerosol absorption and scattering
- Spherical geometry of atmosphere (Prather & Hsu, 2019)
- Multi-angle scattering:
  - Enhanced photolysis above clouds and in top of clouds.
  - Realistic diffuse PAR incident on ocean and biosphere
- Updated and updatable laboratory data tables
- Supported for global community by UC Irvine





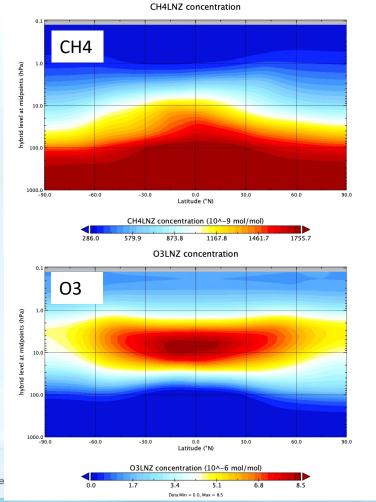
# **Linoz v3:** Linearized ozone chemistry for the stratosphere: the $\{N_2O, NO_Y, O_3, CH_4, H_2O\}$ -system

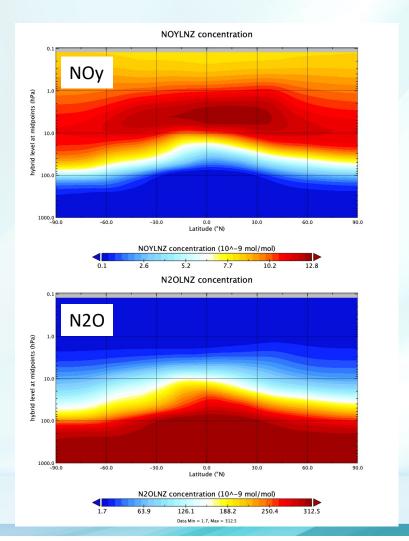
Four prognostic equations (dX/dt) for N<sub>2</sub>O, NO<sub>Y</sub>, O<sub>3</sub> and CH<sub>4</sub>, each a first-order Taylor expansion around monthly zonal mean chemical climatologies of overhead ozone column (photolysis rates) and local values of O<sub>3</sub>, N<sub>2</sub>O, NO<sub>Y</sub>, CH<sub>4</sub>, and temperature. Derivative terms are calculated with UCI's photochemical box (PRATMO).


Stratospheric  $H_2O$  is diagnosed from the  $CH_4$  change, assuming a lower boundary (tropopause) value and conservation of potential water ( $H_2O + 2xCH_4 = constant$ ).

Stratospheric chlorine and bromine levels (Cl<sub>Y</sub>, Br<sub>Y</sub>) are set to a chemical climatology for the specified time period. The Linoz tables are calculated for the historical or projected levels of tropospheric halocarbons.

In contrast Linoz v2:  $O_3$  only, one prognostic equation, linearized relative to climatology of overhead ozone column,  $O_3$  and temperature. Tables are calculated for assumed tropospheric levels of halocarbons,  $CH_4$ , and  $N_2O$ .


<u>Using Linoz v3 with UCI chemistry CTM</u>, we have the first identification of the link between the coupled N<sub>2</sub>O-O<sub>3</sub>-NO<sub>Y</sub> stratospheric chemistry and CH<sub>4</sub> tropospheric chemistry through a 108-year global eigenmode.


Decay of atmospheric chemical perturbations caused by an initial pulse of

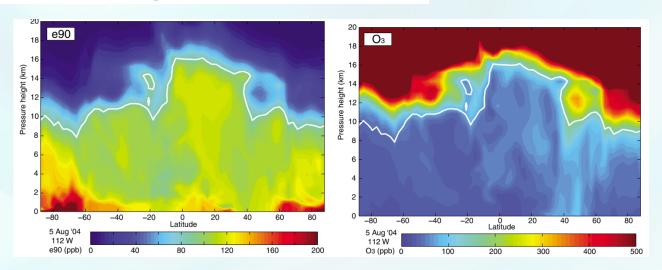


### Annual zonal mean of Linoz v3 species in an E3SM run are a close match to observations.

Already on the E3SM GitHub branch








# E90 tropopause clearly separates strat vs. trop in 3D

#### An atmospheric chemist in search of the tropopause

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 116, D04306, doi:10.1029/2010JD014939, 2011

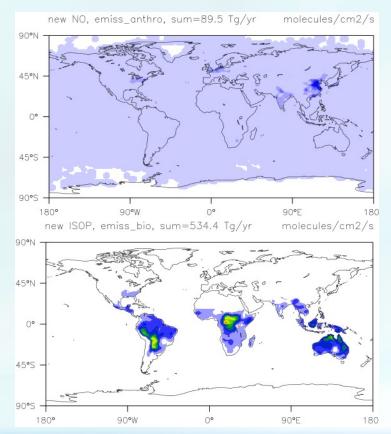
Michael J. Prather, <sup>1</sup> Xin Zhu, <sup>1</sup> Qi Tang, <sup>1</sup> Juno Hsu, <sup>1</sup> and Jessica L. Neu<sup>1,2</sup>



- With equivalent emissions, E3SM TPP threshold (75.5 ppb) is smaller than the UCI CTM threshold (89.8 ppb).
- A new diagnostic, suggesting slower tropospheric mixing in E3SM than in the EC winds
- Currently defined as a 2D TPP. Need to implement a 3D TPP in E3SM for chemistry






# **chemUCI** (years 2000-2009)

### CMIP6 emissions plus natural emissions

Year 2009

NO sum = 89.5 Tg/yr

Biogenic Isoprene sum = 534.4 Tg/yr

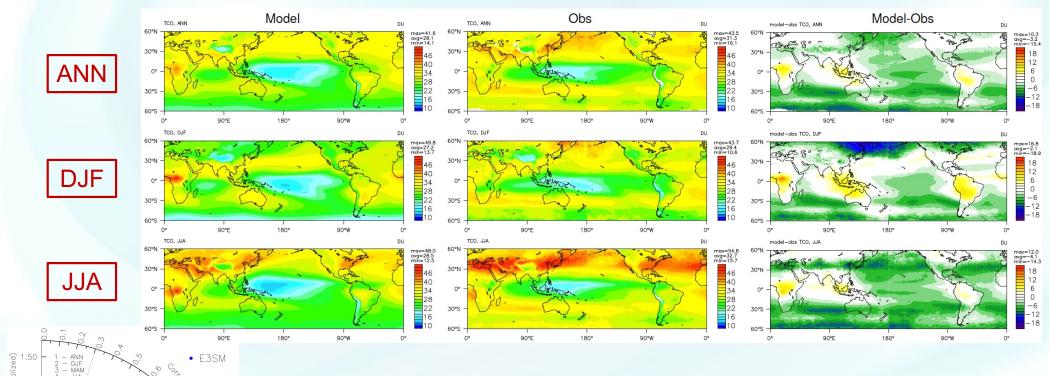






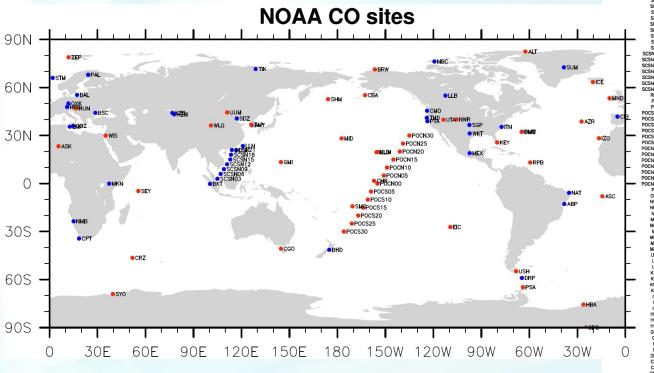
# Trop column ozone vs. satellite obs (OMI/MLS)

å 0.75


Standardize 05.0 05.0

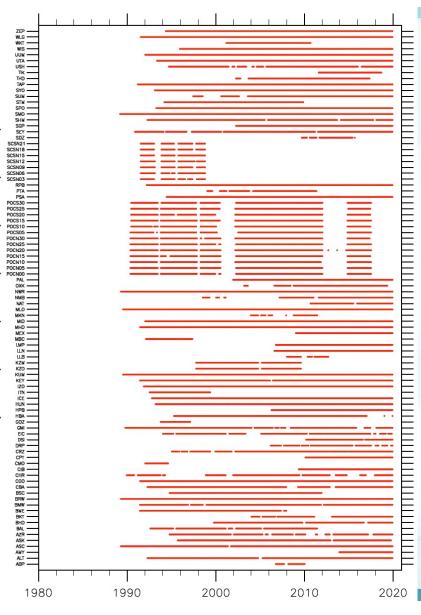
0.50 0.75

REF

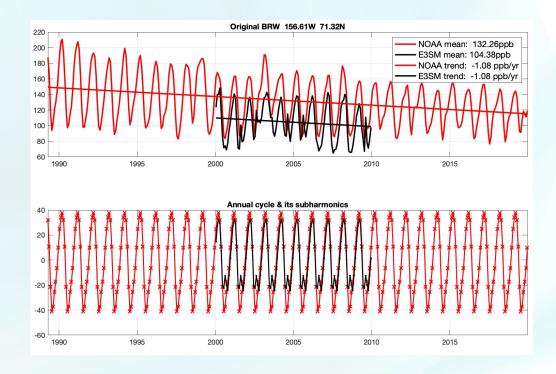

1.25

0.99




- Model overestimates over tropical land, while underestimates over oceans.
- Normalized root-mean-square difference ratios (0.9-1.2) and correlations (0.6-0.9) are reasonably captured.

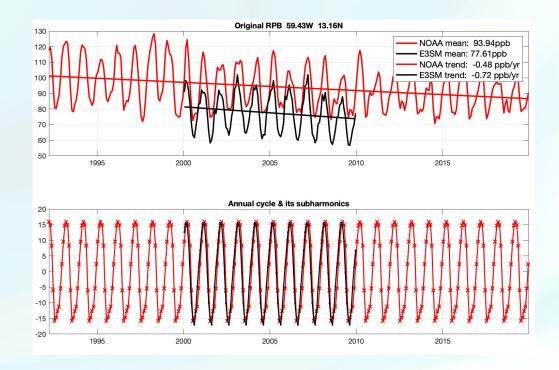





- We pick sites with long-time data (> 20 years)
- And not close to mountains and pollution



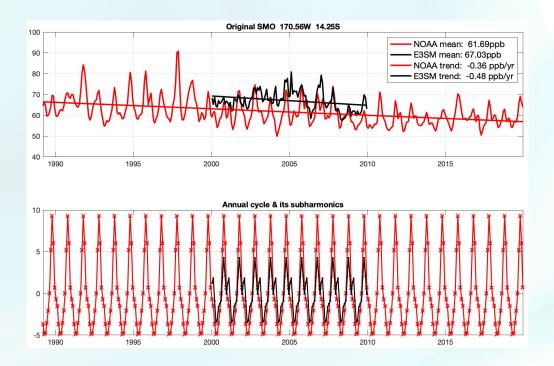



BRW, 71.32 N, 156.61 W





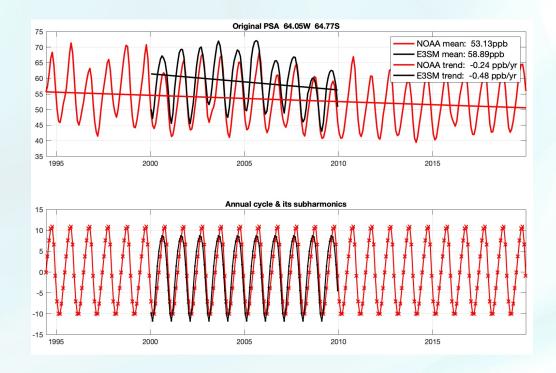



RPB, 13.16 N, 59.43 W





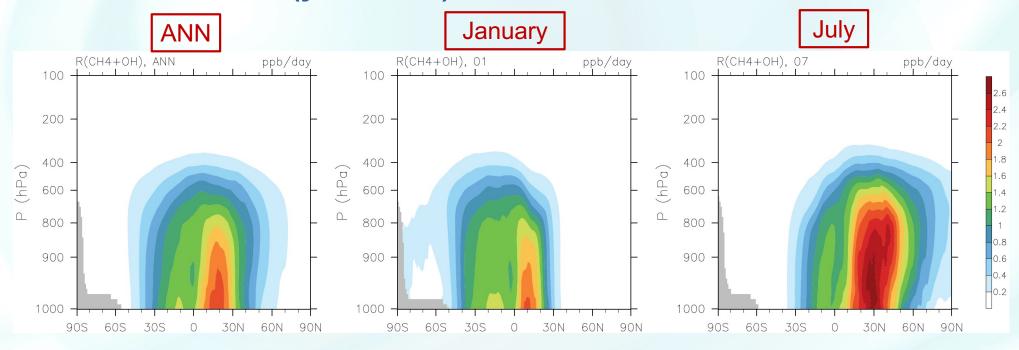



SMO, 14.25 S, 170.56 W ITCZ problems








PSA, 64.77 S, 64.05 W







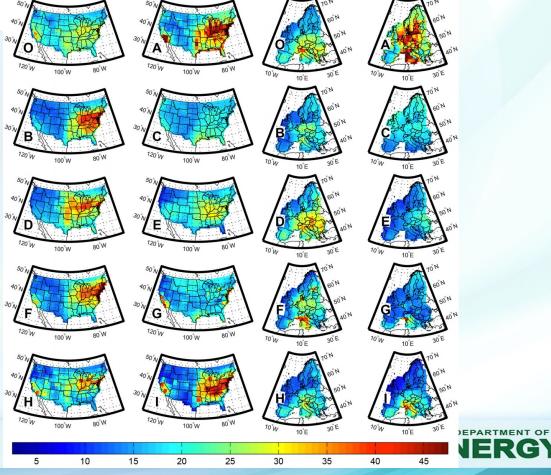
# Methane loss rate (year 2000)



- Methane is prescribed in this run.
- Changes in the methane loss rate imply OH changes.






# More metrics – air quality (O3 and PM)

Use of North American and European air quality networks to evaluate global chemistry-climate modeling of surface ozone

J. L. Schnell<sup>1</sup>, M. J. Prather<sup>1</sup>, B. Josse<sup>2</sup>, V. Naik<sup>3</sup>, L. W. Horowitz<sup>4</sup>, P. Cameron-Smith<sup>5</sup>, D. Bergmann<sup>5</sup>, G. Zeng<sup>6</sup>, D. A. Plummer<sup>7</sup>, K. Sudo<sup>8,9</sup>, T. Nagashima<sup>10</sup>, D. T. Shindell<sup>11</sup>, G. Faluvegi<sup>12</sup>, and S. A. Strode<sup>13,14</sup>

Use air quality networks observations to evaluate modeled surface O<sub>3</sub>

Atmos. Chem. Phys., 15, 10581–10596, 2015 www.atmos-chem-phys.net/15/10581/2015/ doi:10.5194/acp-15-10581-2015





### **More metrics - ATom**

**Species** 

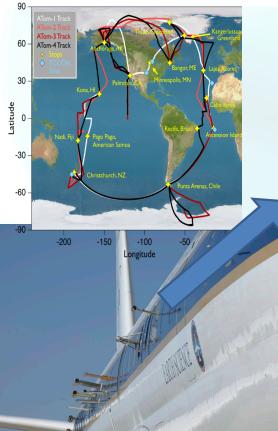
O3, NOx

CO

**HCHO** CH4

PAN

MeONO2

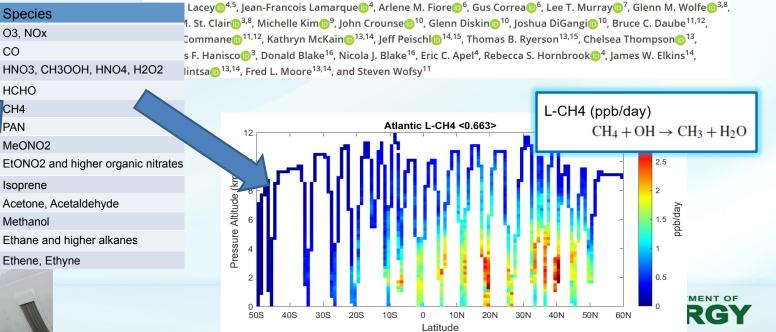

Isoprene

Methanol

Ethene, Ethyne

Acetone, Acetaldehyde

Global profiling transects of the ocean basins (where most of CH<sub>4</sub> loss occurs)




#### NASA Atmospheric Tomography Mission, 2016-2021

**Review status**: this preprint is currently under review for the journal ACP.

Heterogeneity and Chemical Reactivity of the Remote Troposphere defined by Aircraft Measurements

Hao Guo 61, Clare M. Flynn<sup>2</sup>, Michael J. Prather 61, Sarah A. Strode 63, Stephen D. Steenrod 5, Louisa Emmons 64,



# **Summary**

- We implemented chemUCI + Linoz v3 interactive chemistry in an E3SMv2 beta code.
  - Initial results show reasonable tropospheric column ozone and surface CO compared to observations
  - Ready for BGC and aerosol links
  - Need further evaluation against observations and other models
    - Define new chemistry metrics for E3SM diagnostics.
- Working with BGC group, define interface for interactive methane and ozone simulations.
- With aerosol team to link chemistry and aerosols



