Surface-flux driven water mass transformation analysis in E3SM simulations

Hyein Jeong

Adrian K. Turner, Xylar S. Asay-Davis, Darin S. Comeau, Stephen F. Price, Milena Veneziani, Mark R. Petersen, Matthew J. Hoffman, Todd D. Ringler, Luke Van Roekel, Andrew Roberts, Jonathan Wolfe, and Ryan Abernathey¹

Los Alamos National Laboratory

¹ Lamont-Doherty Earth Observatory of Columbia University

Outline

Importance of Southern Ocean and Sea-ice

Water Mass Transformation framework

Application (I) to Southern Ocean in E3SM simulations

Application (II) to dense water formation in Antarctic coastal polynyas

Application (III) to Labrador Sea bias in E3SM simulations

Southern Ocean

Atlantic Meridional Overturning Circulation (AMOC)

From Kuhlbrodt et al. 2007, Violante et al., 2017

- Significant sink for atmospheric heat, anthropogenic carbon dioxide
- Producing the densest water mass in global ocean, Antarctic Bottom Water (AABW)

Marshall and Radko (2003): Residual Mean

Fig. Schematic diagram of the Eulerian mean $\bar{\psi}$ and eddy-induced transport ψ^* component of the Southern Ocean meridional overturning circulation driven by wind and buoyance fluxes.

Southern Ocean overturning is a residual between opposing Ekman (clockwise) and eddydriven (counterclockwise) cells

$$\psi_{res} = \bar{\psi} + \psi^*$$
 \downarrow
 \downarrow
Ekman flow Eddy-driven flow

Marshall and Radko (2003): Residual Mean

"Buoyancy budget" of surface layer controls the strength of the residual overturning

Fig. The residual flow $\psi_{res}=\bar{\psi}+\psi^*$ is assumed to be directed along mean buoyancy surfaces \bar{b} in the interior but to have a diapycnal component in the mixed layer of depth (denoted by the horizontal dotted line).

Buoyance budget: Heat vs. Freshwater

Potential Density Equation

$$\frac{d\Theta}{dt} = \mathcal{D}(\Theta)$$
 : Temperature change over time

$$rac{dS}{dt} = \mathcal{D}(S)$$
 : Salinity change over time

Buoyance budget: Heat vs. Freshwater

"Relatively low latitudes"

"Relatively high latitudes"

Several sources of freshwater flux

Abernathey et al. (2016) Freshwater flux exchange (SOSE)

1 fwSv = 10^6 m³ freshwater s⁻¹ $\cong 3.15 \times 10^4$ Gt freshwater / year

SOSE: Southern Ocean State Estimate, 6yrs (2005-2010) high-res ocean data assimilated product (Mazloff et al. 2010)

Surface freshwater fluxes (sea-ice/ocean interaction)

Surface freshwater fluxes (sea-ice/ocean interaction)

Surface freshwater fluxes (sea-ice/ocean interaction)

There should be wind-driven sea-ice movement!

Sea-ice's role in AABW and AAIW (Saenko and Weaver 2001)

• intermediate model with coarse resolution ocean (MOM2), 2D atmosphere, and dynamic /thermodynamic seaice model

"Sea-ice" is very important in Southern Ocean water masses!

Water Mass Transformation (Walin 1982, Abernathey et al. 2016)

- Powerful way to characterize the role of different processes in driving ocean circulation (overturning).
- "Water mass" refer to a body of water with similar temperature, salinity, and/or density properties.
- "Water mass transformation" is considered to be a process which some properties of a water parcel are changed.
- Depending on the nature of the transformation, the density of the water parcel might be changed continuously.
 → Density changes ultimately affect the ocean dynamics (ocean circulation).
- To aid in our investigation of SO interactions between the atmosphere, ocean, sea ice, and ice shelves, we applied **WMT** analysis.

$$\Omega(\sigma_k,t) = -\frac{1}{(\sigma_{k+1} - \sigma_k)} \iint_A \left(\frac{\alpha Q_{net}}{\rho_0 C_p}\right) dA + \frac{1}{(\sigma_{k+1} - \sigma_k)} \iint_A \left(\frac{\beta S F_{net}}{\rho_0}\right) dA$$

$$\text{Net surface heat flux} \qquad \text{Net surface freshwater flux}$$

$$F_{net} = F_{A \to O} + F_{I \to O}$$

 $F_{A o O}$: Atmosphere to Ocean

 $F_{I o O}$: Sea ice to Ocean (formation and melting)

Water Mass Transformation (Walin 1982, Abernathey et al. 2016)

Water-mass transformation rates:

$$\Omega(\sigma_k, t) = -\frac{1}{(\sigma_{k+1} - \sigma_k)} \iint_A \left(\frac{\alpha Q_{net}}{\rho_0 C_p} \right) dA + \frac{1}{(\sigma_{k+1} - \sigma_k)} \iint_A \left(\frac{\beta S F_{net}}{\rho_0} \right) dA$$

Water-mass formation rates:

$$M(\sigma_k) = -[\overline{\Omega(\sigma_{k+1})} - \overline{\Omega(\sigma_k)}]$$

	Positive	Negative
Transformation rates	Denser Lose buoyancy	Lighter Gain Buoyance
Formation rates	Water convergence Downwelling motion	Water divergence Upwelling motion

Water Mass Transformation (Abernathey et al. 2016, SOSE)

- Surface freshwater flux term is dominant
- Heat flux is secondary to freshwater flux

- Sea-ice formation/melting is dominant
- brine rejection peaks in UCDW range
- sea-ice melting peaks in AAIW range

Water Mass Formation Rates (Abernathey et al. 2016, SOSE)

- Destruction (upwelling motion) of UCDW and some AAIW dominated by "sea-ice"
- Precipitation, heat flux, and sea-ice melting contribute to production of SAMW
- Heat flux term makes AABW → limitation of SOSE data, real ocean transformation rate in AABW mainly caused by brine rejection!

Application (I) to Southern Ocean in E3SM simulations

	SOSE	E3SM (Ocean and Sea-ice stand-alone)
Resolution	1/6° x 1/6°	30to10
Periods	6 years (2005-2010)	20 years

Water Mass Transformation in Southern Ocean

Sea-ice formation (brine rejection)
Sea-ice melting
Sea-ice formation and melting
E-P-R
Salinity restoring

Application (II) to dense water formation in coastal polynyas

	LR tuned HR E3SM	HR E3SM (Caldwell et al. 2019)
Resolution	Low Res. 60to30	High Res. 18to6
Periods	30 years (26-55)	30 years (26-55)

Sea-ice production in coastal polynyas

- Small in area compared to the total sea-ice zone (<3%)
- High Sea-ice production (10% of total sea-ice volume)
- Important climate impact on atmospheric mesoscale motions by transporting latent heat from ocean
- Impact on strong water mass transformation → AABW

Sea-ice production in Antarctic coastal polynyas

Water Mass Transformation in coastal polynyas

1.2

E3SM-HR

LR

Surface freshwater flux

E3SM-LR

(b) Surface fluxes

HR

(a) Surface fluxes

1.2

- Dense water-mass transformation in HR
- Major role of surface freshwater flux

- Brine rejection term is dominant
- However, it occurs at relatively low density ranges → it is related to fresh bias along the Antarctic coast in HR

Jeong et al. (in prep)

Application (III) to Labrador Sea bias in E3SM simulations

	LR tuned HR E3SM	HR E3SM (Caldwell et al. 2019)
Resolution	Low Res. 60to30	High Res. 18to6
Periods	30 years (26-55)	30 years (26-55)

Labrador Sea bias in E3SM simulations

From Caldwell et al. 2019

120°E

Water Mass Transformation in E3SM simulations

- Dense water-mass transformation in HR
- Major role of heat flux loss (to the atmosphere) rather than surface freshwater flux term
- However, no dense water-mass transformation in LR

Atlantic Meridional Overturning Circulation (AMOC)

From Kuhlbrodt et al. 2007, Violante et al., 2017

Thank you

- Kuhlbrodt, T., Griesel, A., Montoya, M., Levermann, A., Hofmann, M. and Rahmstorf, S., 2007. On the driving processes of the Atlantic meridional overturning circulation. Reviews of Geophysics, 45(2).
- Violante, R.A., Laprida, C. and Chapori, N.L.G., 2017. The Argentina Continental Margin: Location and Significance. In The Argentina Continental Margin (pp. 11-32). Springer, Cham.
- Marshall, J. and Radko, T., 2003. Residual-mean solutions for the Antarctic Circumpolar Current and its associated overturning circulation. Journal of Physical Oceanography, 33(11), pp.2341-2354.
- Abernathey, R.P., Cerovecki, I., Holland, P.R., Newsom, E., Mazloff, M. and Talley, L.D., 2016. Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning. Nature Geoscience, 9(8), p.596.
- Mazloff, M.R., Heimbach, P. and Wunsch, C., 2010. An eddy-permitting Southern Ocean state estimate. Journal of Physical Oceanography, 40(5), pp.880-899.
- Saenko, O.A. and Weaver, A.J., 2001. Importance of wind-driven sea ice motion for the formation of Antarctic Intermediate Water in a global climate model. Geophysical Research Letters, 28(21), pp.4147-4150.
- Walin, G., 1982. On the relation between sea-surface heat flow and thermal circulation in the ocean. Tellus, 34(2), pp.187-195.
- Nihashi, S. and Ohshima, K.I., 2015. Circumpolar mapping of Antarctic coastal polynyas and landfast sea ice: Relationship and variability. Journal of climate, 28(9), pp.3650-3670.
- Caldwell, P.M., Mametjanov, A., Tang, Q., Van Roekel, L.P., Golaz, J.C., Lin, W., Bader, D.C., Keen, N.D., Feng, Y., Jacob, R. and Maltrud, M.E., The DOE E3SM coupled model version 1: Description and results at high resolution. Journal of Advances in Modeling Earth Systems.

