

Radiocarbon constraints on the carbon cycle

Qing Zhu

Lawrence Berkeley National Laboratory June-25-2019

EARTH AND ENVIRONMENTAL SCIENCES • LAWRENCE BERKELEY NATIONAL LABORATORY

outline

- 1.Terrestrial ¹²C cycle and ¹⁴C signal constraints on ¹²C cycle
- 2.14C in E3SM land model (Chen et al. 2019)
- 3.¹⁴C for CMIP5/CMIP6 ESMs (Metzler et al., review at JAMES)

- Major processes
 - Photosynthesis
 - Plant respiration
 - Litter input
 - Soil turnover

Soil carbon residence time could be very long

•

EARTH AND ENVIRONMENTAL SCIENCES • LAWRENCE BERKELEY NATIONAL LABORATORY

2

rerer

Contemporary

21st century absolute change

Todd-Brown et al., 2014

Q1: How do ESM simulate SOC stock? Q2: Better SOC estimate -> reliable future projection?

EARTH AND ENVIRONMENTAL SCIENCES • LAWRENCE BERKELEY NATIONAL LABORATORY

.....

C Input: gross input, depth-distribution, ...

Turnover: decomposability, T sensitivity, ...

How to use observational data to constrain the C cycle in Earth System Model?

SOC stock	Inputs	turnover
Harmonized World Soil Database	GPP, CUE	Soil ¹⁴ C profile
SoilGrid	Long-term plots	Soil Incubation
Northern Circumpolar Soil Carbon Database		

Radiocarbon (14C) data

He et al., 2016

How do ESMs represent soil age (turnover time)?

Radiocarbon (¹⁴C) in ESM

He et al., 2016

EARTH AND ENVIRONMENTAL SCIENCES • LAWRENCE BERKELEY NATIONAL LABORATORY

EARTH AND ENVIRONMENTAL SCIENCES • LAWRENCE BERKELEY NATIONAL LABORATORY

8

mm

BERKELEY LAB

International-Soil-Radiocarbon-Database/ISRaD

Fig. 1 Conceptual diagram of an entry in ISRaD. Each box represents a table in an entry; the horizontal bars distinguish the hierarchical levels of the database, and arrows show the hierarchical linkages among the tables.

9

mm

RERKELEY LA

Radiocarbon (¹⁴C) in CLM

Koven et al., 2013

mmi

RERKELEY LAP

Summary: background

- 1. Soil ¹⁴C signal is controlled by radioactive decay and perturbed by "nuclear bomb"
- 2. ¹⁴C is powerful constraint on soil C cycle, in additional to ¹²C SOC stock
- 3. ¹⁴C is largely biased (too young) in current generation of ESM

Challenges & Research Questions

- How do we effectively use ¹⁴C soil profile data (in situ) to constrain ESM (100kmx100km gridcell)?
- 2. How can ¹⁴C data inform ¹²C soil carbon model development?

Case #1: ¹⁴C in E3SM

Model: ELM-ECA (Zhu et al., 2019)

Modeling protocol:

1200

200

Atmospheric Delta ¹⁴C (permil)

Grid cell selection:

13

Case #1: ¹⁴C in E3SM

14

mm

BERKELEY LAB

Grid cell level comparison

Chen et al., 2019

EARTH AND ENVIRONMENTAL SCIENCES • LAWRENCE BERKELEY NATIONAL LABORATORY

15

mmi

RERKELEY LAP

-1000 -1000 -500 500 -1000 -500 500 -500 0 500 0 0 Δ^{14} C (per mil) Δ^{14} C (per mil) Δ^{14} C (per mil) Chen et al., 2019

100

Hypothesis: soil decomposability parameterization bias leads to the young soil at deep soil layers Hypothesis: fresh carbon input (root below 50cm) at deep layers is too large

100

100

16

mm

RERKELEY LAP

Sensitivity analysis

Sensitivity analysis

Best model-data fit

- z_tau means to represent "unconsidered factors" on soil decomposability across depth
- Heterogeneous z_tau benefit model-data fit

Machine learning approach for bias analysis

10 cm: air temperature, organic matter density, PFT, soil order

70 cm: organic matter density, PFT

20

RERKELEY LA

Summary: case study 1

- 1. ELM deep soil carbon is "too young"
- 2. After tuning, SOC and delta¹⁴C bias are largely removed
- 3. SOC and ¹⁴C are sensitive to z_tau, rooting depth profile
- 4. Heterogeneous z_tau at different depth
- 5. Shallow and deep soils are controlled by different factors

Q: Can we reconstruct ¹⁴C, given only ¹²C output variables?

Carbon cycle models are subject to the law of mass conservation

represented as compartmental systems (Anderson, 1983)

Compartmental system $\frac{1}{dt}$ C(

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbf{C}(t) = \mathbf{B}(\mathbf{C}(t), t) \mathbf{C}(t) + \mathbf{u}(\mathbf{C}(t), t), \quad t > t_0,$$
$$\mathbf{C}(t_0) = \mathbf{C}^0.$$

Semi-analytic solution

$$\mathbf{C}(t) = \Phi(t, t_0) \,\mathbf{C}^0 + \int_{t_0}^t \Phi(t, \tau) \,\mathbf{u}(\tau) \,\mathrm{d}\tau.$$

Transition matrix

$$\frac{\mathrm{d}}{\mathrm{d}t} \Phi(t, t_0) = \mathrm{B}(t) \Phi(t, t_0), \quad t > t_0$$
$$\Phi(t_0, t_0) = \mathrm{Id},$$

 ^{14}C and ^{12}C shares the same governing matrix $\textbf{\textit{B}}$

¹⁴B(C(t), t) := B(C(t), t) - \lambda Id

Transition matrix
$${}^{14}\Phi(t,t_0) = \Phi(t,t_0) e^{-\lambda (t-t_0)} \operatorname{Id}, \quad t \ge t_0$$

24

EARTH AND ENVIRONMENTAL SCIENCES • LAWRENCE BERKELEY NATIONAL LABORATORY

Metzler et al., review at JAMES

EARTH AND ENVIRONMENTAL SCIENCES • LAWRENCE BERKELEY NATIONAL LABORATORY

EESA

BERKELEY LAB

Potentials of ¹⁴C reconstruction

- Reconstruct ¹⁴C CMIP5/CMIP6 model with ¹²C cycle
- Save ¹⁴C physical model development efforts
- Benchmark/assess soil age, turnover time for any ESM with ¹²C output

Conclusions

- 1. The growing ¹⁴C database will be powerful tool for studying soil ¹²C cycling
- A "high fidelity" ESM need to get both ¹²C and ¹⁴C right
- 3. Shallow vs deep soil ¹²C cycles are different
- 4. ESM ¹⁴C dynamics could be accurately reconstructed using ¹²C dynamics

