Discrete Element Model for Sea Ice E3SM all hands

The DEMSI Team

LANL, SNL

18th April 2019

DEMSI Team

Los Alamos National Laboratory

- Adrian Turner (BER PI)
- Andrew Roberts
- Min Wang

Sandia National Laboratories

- Kara Peterson (ASCR PI)
- Dan Bolintineanu
- Paul Kuberry
- Dan Ibanez

Naval Postgraduate School

Travis Davis

Discrete Element Model for Sea Ice (DEMSI)

- Develop a discrete element method sea ice model suitable for global climate applications
 - Improved sea ice dynamics fidelity
 - Improved performance on future DOE heterogeneous computing architectures
- Particle method with discrete elements representing regions of sea-ice
 - Explicitly calculate forces between elements
 - Integrate equation of motion for each element

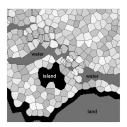


Figure: Hopkins (2006)

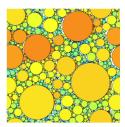


Figure: Herman (2012)

SciDAC

- Part of DOE Scientific Discovery through Advanced Computing(SciDAC) funding call
 - Combines researchers from Advanced Scientific Computing Research (ASCR) and Earth System Modeling (ESM)
 - 2 major projects and 6 pilot projects (high risk, high reward)
 - DEMSI: \$3million over 2.5 years, with possibility of continuance for further 2.5 years
 - Develop new components for DOE Energy Exascale Earth System Model (E3SM)

Scientific Goals

- Current models of sea ice generally treat it as a viscous-plastic material
 - Assumes grid cells are large enough that there is an isotropic distribution in each of linear openings (leads) in the ice pack
 - \bullet Developed when grid cell size was ${\sim}100 \text{km}$
 - Models now use much higher resolution e.g. \sim 6km cells for E3SM/MPAS-Seaice
- Observations suggest viscous-plastic models poor for resolutions $\rm < \sim \! 10 km$
 - Spatial/temporal deformation scaling, dispersion of buoys
- A discrete element method allows explicit and complex force law Hope to capture anisotropic, heterogeneous and intermittent nature of sea ice deformation
 - Capture explicitly fracture and break up of pack

Project Overview

DEMSI:

- Circular elements to start (speed)
- Each element represents a region of sea ice, and has its own ice thickness distribution (initial resolution > floe size)
- Dynamics: Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)
 - Particle based molecular dynamics code
 - Built in support for DEM methods including history dependent contact models
 - Computationally efficient with massive parallelization
- Thermodynamics: CICE consortium Icepack library
 - State-of-the-art sea-ice thermodynamics package
 - Vertical thermodynamics, salinity, shortwave radiation, snow, melt ponds, ice thickness distribution, BGC

Principle challenges

Contact model

• How should elements interact to represent sea ice physics?

Element distortion

 Convergence of sea ice converts area to thickness – how to manage element distortion? How to add new elements.

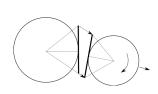
Coupling

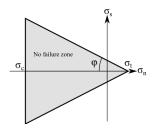
• How to couple particles to Eulerian mesh conservatively?

Computational performance

• How to make the model fast enough for global climate applications?

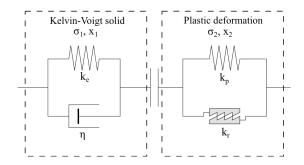
Contact Model


- Determines normal and tangential forces between elements
- These forces (as well as body forces) are integrated to determine velocity – velocity Verlet solver
- For sea ice we consider two situations:
 - Elements are bonded together
 - Elements are not bonded together
- Our initial implementation adapts the work of Hopkins for circular elements



Interacting elements in DEM

Contact Model: Bonded elements


- Bonded elements have linear bonds between them
- Each point on bond has viscous-elastic glue
- Relative motion of elements places each point on bond under normal and tangential displacement
 - Elastic and damping forces at each point
 - Mohr-Coulomb fracture law
 - Cracks propagate from bonds ends inwards

Contact Model: Unbonded elements

- Unbonded elements have no strength in tension
- On compression elements must represent ridge formation
 - Element area is converted to thickness
- Initially based on Hopkins ridge model normal friction force term independent of relative element velocity

The DEMSI Team (LANL, SNL)

Contact Model Validation

Figure: Cantilever test case

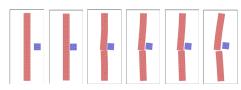
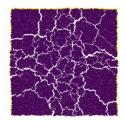


Figure: Impact test case



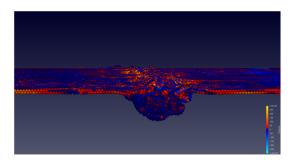
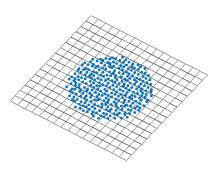
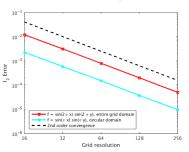

Figure: Uniform stress test case

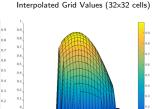
Figure: Two particle test case


Improved contact model

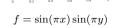
- Performing high resolution floe-resolving simulations
 - Results will be averaged to derive contact model for lower-resolution
- Simulations of individual floes with LAMMPS to determine ridge formation force

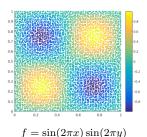

Coupling to Atmosphere/Ocean

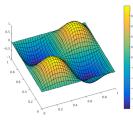
- DEMSI requires an method for interpolation between Lagrangian particles and Eulerian grids
- Have developed a MLS method for interpolating particle data to a fixed structured grid within DEMSI
- Next steps Implementing optimization-based strategy to ensure property preservation



Schematic showing elements on Eulerian grid

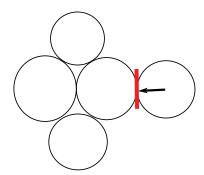

Second-order convergence

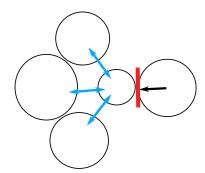

Particle Distribution and Values



 $f = \sin(\pi x)\sin(\pi y)$

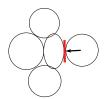
- Approximately 4
 particles-per-cell, particle
 resolution increases with grid
 resolution
- Particles initialized with random perturbation from structured arrangement
- Error in grid solution compared to exact solution, computed for interior nodes




 $=\sin(2\pi x)\sin(2\pi y)$

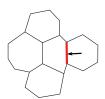
Element creation and destruction

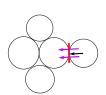
- Convergence of sea ice results in the formation of a pressure ridge Sea ice build up on Canadian Archipelago
 - Sea ice area is converted to sea ice thickness while mass is conserved
 - Model elements will decrease in area during simulation
 - Decreases time step, add artificial strain

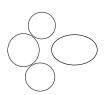

Convergence and ridge formation of two elements in pack

Shrinking of element adds strain to the pack

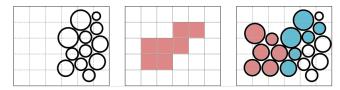
Element creation and destruction


 Possible solutions – Ellipses, Polygons, Merging, Remapping, Transference


Use elliptical elements

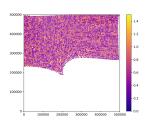

Periodically remap elements back to initial distribution

Use polygonal elements

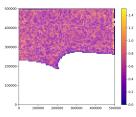

Keep elements same size and transfer mass between them

Merge elements that get too small $% \begin{center} \begin{center$

Frazil formation

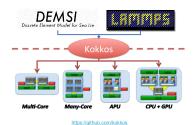


(left): Elements before frazil formation. (center): Frazil formation on Eulerian mesh. (right): Elements after frazil added. (red): New elements. (blue): Existing elements with frazil added.

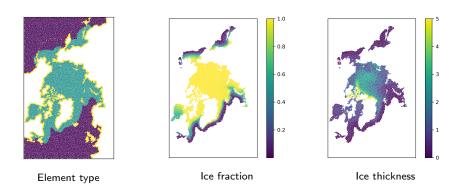

- Another significant challenge is addition of ice from frazil formation
- Take frazil from underlying Eulerian mesh
 - Add to existing elements
 - Create new elements
- Challenge is how to create the new elements with a tightly packed distribution

Geometrical remapping

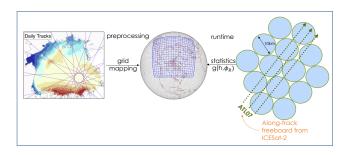
- Deformation of elements during ridging slows time step, results in artificial strain
- Investigating a global remapping back to an initial "good" element distribution
- Geometric version implemented and tested
- Later will use the coupling system


Particle distribution before remapping

Particle distribution after remapping


Computational Performance

- Global climate simulations will be computationally expensive
- DOE next generation computers will have heterogenous architectures
 - Oakridge Summit: IBM's POWER9 CPUs and Nvidia Volta GPUs
 - NERSC Perlmutter: both CPU-only and GPU-accelerated nodes
- Modifying LAMMPS DEM to use Kokkos programming model
 - Allows good performance on CPU and GPU
- Will also investigate if elastic modulus can be reduced without affecting simulation fidelity
 - Will allow longer timesteps



Realistic simulations

- Work has begun to perform Arctic basin scale simulations
- Particle distribution initialization, forcing, domain
- Currently integrating previous work

Metrics for assessing model fidelity

- ICESat-2 emulator
- Spatial and temporal deformation scaling
- Buoy dispersion analysis easier for particle method!
- Other standard sea-ice metrics

Future work

The DEMSI Team (LANL, SNL)

- Currently writing renewal proposal for phase 2
- Phase 2 goal: couple DEMSI into E3SM and perform coupled simulations
 - Considerations to conservative coupling with rest of model, coastline
 - Machine learning techniques to determine suitable contact model
 - Improved performance on GPUs
- Also explore performance advantage of DEMSI with large numbers of tracers
 - No explicit transport scheme needed
- DEMSI likely to be publicly available through github eventually
 - Includes code, pre/post-processing, documentation, testing, test cases