Exponential Time Differencing for the Tracer Equations Appearing in Primitive Equation Ocean Models

Sara Calandrini

joint work with Konstantin Pieper and Max Gunzburger
LANL Meeting
January 17, 2019

Outline

- Tracer equation
- ETD solver for the tracer equation
- Numerical tests
- Future Work

Tracer Equation \& Discretization

Tracer Equation with vertical discretization

$$
\begin{gathered}
\frac{\partial\left(h_{k} T_{k}\right)}{\partial t}=-\nabla \cdot\left(h_{k} u_{k} T_{k}\right)-\bar{T}_{k}^{t} w_{k}^{t}+\bar{T}_{k+1}^{t} w_{k+1}^{t}+\left[D_{h}^{T}\right]_{k}+\left[D_{\nu}^{T}\right]_{k}, \\
{\left[D_{h}^{T}\right]_{k}=\nabla \cdot\left(h_{k} \kappa_{h} \nabla T_{k}\right), \quad\left[D_{\nu}^{T}\right]_{k}=h_{k} \delta z_{k}^{m}\left(\kappa_{\nu} \delta z^{t}\left(T_{:}\right)\right) .}
\end{gathered}
$$

- m, t : location as the middle or top of the layer k in the vertical
- $\bar{\phi}_{k}^{t}=\frac{\phi_{k-1}+\phi_{k}}{2}$
- ":" in subscripts: multiple vertical layers were used for a vertical operator
- κ_{h}, κ_{ν} : diffusion
- $\delta z_{k}^{m}\left(\phi_{:}^{t}\right)=\frac{\phi_{k}^{t}-\phi_{k+1}^{t}}{h_{k}}$
- $\delta z_{k}^{t}\left(\phi_{:}^{m}\right)=\frac{\phi_{k-1}^{m}-\phi_{k}^{m}}{\overline{(h)_{k}^{t}}}$

Full ETD Solver

Denote by T the tracer (temperature) and by $T_{n} \approx T\left(t_{n}\right)$ the current solution at time t_{n}. Let

$$
\partial_{t} T=F(T)=A_{n} T+r_{n}(T) .
$$

This equation is actually linear (u, h and w are constants), so the remainder is zero, namely

$$
\partial_{t} T=F(T)=A_{n} T
$$

In this case, we can simply consider the exponential Euler method to find the solution, thus at the time step $n+1$

$$
T_{n+1}=T_{n}+\Delta t \varphi_{1}\left(\Delta t A_{n}\right) F\left(T_{n}\right)
$$

By taking $A_{n}=F^{\prime}\left[T_{n}\right]$ (Exponential Rosenbrock Euler), this method gives the exact solution.

Splitting Scheme - One stage method

The transport and mixing in the vertical direction cause, in general, more restrictive requirements than the ones for the horizontal. Therefore, the linear operator A_{n} may be split into

$$
A_{n}=A_{n}^{z}+A_{n}^{x}
$$

Thus,

$$
\partial_{t} T=F(T)=A_{n}^{z} T+A_{n}^{x} T=A_{n}^{z} T+r_{n}(T) .
$$

Using exponential Euler, $r_{n}(T)\left(=A_{n}^{\times} T\right)$ is simply neglected, so the solution is given by

$$
T_{n+1}=T_{n}+\Delta t \varphi_{1}\left(\Delta t A_{n}^{z}\right) F\left(T_{n}\right)
$$

Operator Splitting

Splitting Scheme - Two stages method

Using a second stage method following a predictor/corrector approach, we would get

$$
\begin{aligned}
& T_{n+1}^{1 \text { ststage }}=T_{n}+\Delta t \varphi_{1}\left(\Delta t A_{n}^{z}\right) F\left(T_{n}\right), \\
& T_{n+1}=T_{n+1}^{1 \text { st stage }}+\frac{1}{2} \Delta t \varphi_{1}\left(\Delta t A_{n}^{z}\right)\left(N_{n+1}^{1 s t s t a g e}-N_{n}\right),
\end{aligned}
$$

where $N_{n}=F\left(T_{n}\right)-A_{n}^{2} T_{n}$, and
$N_{n+1}^{1 \text { ststage }}=F\left(T_{n+1}^{1 \text { st stage }}\right)-A_{n}^{z} T_{n+1}^{1 \text { st stage }}$, so N takes into account only the contribution from the horizontal terms.

Computationally, to build $N_{n+1}^{1 \text { ststage }} I$ don't need to construct the full $F\left(T_{n+1}^{1 \text { ststage }}\right)$, but only the horizontal terms evaluated at $T_{n+1}^{1 s t}$ stage

Operator Splitting

Matrix A_{n}^{z}

Block diagonal structure of A_{n}^{z} :

Figure: Simplified case with 4 horizontal elements and 4 vertical layers.
Pros of a block diagonal structure:
(1) Solving many small problems instead of a large one.
(2) Easy for parallelization purposes.

Numerical Tests - Box shape geometry

Velocity Field $(u, w)=\left(-\psi_{1}(x) \psi_{2}^{\prime}(z), \psi_{1}^{\prime}(x) \psi_{2}(z)\right)$

$\psi_{1}(x)=1-\frac{\left(x-\frac{x_{\text {max }}}{2}\right)^{4}}{\left(\frac{x_{\text {max }}}{2}\right)^{4}}, \quad \psi_{2}(z)=1-\frac{\left(z-\frac{z_{\text {min }}}{2}\right)^{2}}{\left(\frac{\left(z_{\text {min }}\right.}{2}\right)^{2}}$
with $x_{\max }=10$ and $z_{\text {min }}=-10$.

Numerical Tests - Box shape geometry

40 layers of height $\Delta z=0.25 \mathrm{~m}$
$\Delta x=1 \mathrm{~m}$ so 10 horizontal elements
$\mathrm{CFL}_{x}=\frac{\max u \cdot d t}{\Delta x}$ and $\mathrm{CFL}_{z}=\frac{\max w \cdot d t}{\Delta z}$

3 solvers:

- Exponential Rosenbrock Euler (ERE)
- Splitting ETD 2 stages
- RK4 + implicit Euler

Numerical Tests - Box shape geometry

$\operatorname{ERE}(\mathrm{dt}=6): \mathrm{CFL}_{z}=19.2, \mathrm{CFL}_{x}=2.4$
Splitting ETD 2 stages $(\mathrm{dt}=3): \mathrm{CFL}_{z}=9.6, \mathrm{CFL}_{x}=1.2$
RK4 + implicit Euler ($\mathrm{dt}=0.5$): $\mathrm{CFL}_{z}=1.6, \mathrm{CFL}_{x}=0.2$
Constant CFL ratio: $\frac{\mathrm{CFL}_{z}}{\mathrm{CFL}_{x}}=8$

	$k_{\nu}=2.5 \cdot 10^{-5}$		
	dt	time steps	computational time
ERE	6	750	16.5680
Splitting ETD 2 stages	3	1500	31.8529
RK4 + implicit Euler	0.5	9000	89.3249

Table: Results for the three solvers, all times are in seconds (s).
Note: n. of vectors in the Krylov basis:
4 vectors for the four central elements and 8 for the six external ones.

Rectangle with a circular velocity field

Numerical Tests - Rectangle shape geometry

Velocity Field $(u, w)=\left(-\psi_{1}(x) \psi_{2}^{\prime}(z), \psi_{1}^{\prime}(x) \psi_{2}(z)\right)$

$\psi_{1}(x)=1-\frac{\left(x-\frac{x_{\text {max }}}{2}\right)^{16}}{\left(\frac{x_{\text {max }}}{2}\right)^{16}}, \quad \psi_{2}(z)=1-\frac{\left(z-\frac{z_{\text {min }}}{2}\right)^{2}}{\left(\frac{- \text { main }^{2}}{2}\right)^{2}}$
with $x_{\max }=40$ and $z_{\text {min }}=-10$.

Numerical Tests - Rectangle shape geometry

40 layers of height $\Delta z=0.25 \mathrm{~m}$
$\Delta x=1 \mathrm{~m}$ so 40 horizontal elements
CFL ratio: $\frac{C F L_{z}}{\mathrm{CFL}_{x}}=8$

	$k_{\nu}=2.5 \cdot 10^{-5}$		
	dt	time steps	computational time
Splitting ETD 2 stages	2.8	5,000	244.0533
RK4 + implicit Euler	0.5	28,000	669.9195

Table: Results for the three solvers, all times are in seconds (s).

Note: n. of vectors in the Krylov basis:
4 vectors for the thirty-four central elements and 8 for the six external ones.

Primitive equations tests - Qualitative Results

Lock Exchange:

Test Description:

- 20 layers, each of which has a thickness of 1 m
- Initial condition for velocity: $u=0$ in very layer
- Initial condition for temperature:

$$
T(x, z)= \begin{cases}5, & x<32 \mathrm{~km} \\ 30, & x \geq 32 \mathrm{~km}\end{cases}
$$

All diffusion are turned off, so the correct solution is where no mixing occurs, and the front propagates with no intermediate temperatures between $5^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$.
With z-level coordinates, the intermediate layers have temperature in between $5^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$.

Primitive equations tests - Qualitative Results

Lock Exchange test case with $\nu_{h}=100$:
(a)

(b)

Figure: (a) our ETD solver, (b) MPAS Ocean.

Primitive equations tests - Qualitative Results

Internal Waves:

The initial temperature distribution is $T_{0}(z)+T^{\prime}(x, z)$, where

$$
\begin{gathered}
T_{0}(z)=T_{b o t}+\left(T_{\text {top }}-T_{b o t}\right) \frac{z_{b o t}-z}{z_{b o t}}, \text { and } \\
T^{\prime}(x, z)=-A \cos \left(\frac{\pi}{2 L}\left(x-x_{0}\right)\right) \sin \left(\pi \frac{z+0.5 \Delta z}{z_{b o t}+0.5 \Delta z}\right),
\end{gathered}
$$

where $T_{\text {bot }}=10.1^{\circ} \mathrm{C}, T_{\text {top }}=20.1^{\circ} \mathrm{C}, z_{\text {bot }}=-487.5 \mathrm{~m}, L=50$ $\mathrm{km}, x_{0}=125 \mathrm{~km}, x_{0}-L<x<x_{0}+L, \Delta z=25 \mathrm{~m}$, and $A=2^{\circ} \mathrm{C}$.

The perturbation is a single hump of displaced isotherms that initiate symmetric waves propagating out from the center.

Primitive equations tests - Qualitative Results

Internal Waves:

Figure: (a) our ETD solver, (b) MPAS Ocean, (c) MITgem , (d) MOM

Future Work

- Further testing of the splitting ETD scheme with two stages.
- Testing the performances of the proposed solver on more realistic applications.
- Simulating the behavior of multiple tracers in addition to the temperature, such as contaminants and salinity.
- Investigating spatial grid refinements so that passive tracer transport (of, e.g., contaminants) can be handled.

References

- Petersen, M. R., Jacobsen, D. W., Ringler, T. D., Hecht, M. W., \& Maltrud, M. E. "Evaluation of the arbitrary LagrangianEulerian vertical coordinate method in the MPAS-Ocean model." Ocean Modelling, 86, 2015, pp. 93-113.
- llicak, M., Adcroft, A.J., Griffies, S.M., Hallberg, R.W. "Spurious dianeutral mixing and the role of momentum closure." Ocean Modelling, 45, 2012, pp. 37-58.
- Ringler, T., Petersen, M., Higdon, R.L., Jacobsen, D., Jones, P.W. and Maltrud, M. "A multi-resolution approach to global ocean modeling." Ocean Modelling, 69, 2013, pp. 211-232.
- Hochbruck, M. and Ostermann, A. "Exponential integrators." Acta Numerica, 19, 2010, pp.209-286.
- Li, S.J., Luo, L.S., Wang, Z.J. and Ju, L. "An exponential time-integrator scheme for steady and unsteady inviscid flows." Journal of Computational Physics, 365, 2018, pp.206-225.

