Tracer	Equation

ETD Solver

Numerical Tests

Future Work

Exponential Time Differencing for the Tracer Equations Appearing in Primitive Equation Ocean Models

Sara Calandrini

FLORIDA STATE UNIVERSITY

joint work with Konstantin Pieper and Max Gunzburger

LANL Meeting

January 17, 2019

Tracer Equation O	ETD Solver	Numerical Tests	Future Work
Outline			

- Tracer equation
- ETD solver for the tracer equation
- Numerical tests
- Future Work

Tracer Equation	ETD Solver	Numerical Tests	Future Work
•			
Tracer Equation & Discretization			

Tracer Equation with vertical discretization

$$\frac{\partial(h_k T_k)}{\partial t} = -\nabla \cdot (h_k u_k T_k) - \overline{T}_k^t w_k^t + \overline{T}_{k+1}^t w_{k+1}^t + [D_h^T]_k + [D_\nu^T]_k ,$$
$$[D_h^T]_k = \nabla \cdot (h_k \kappa_h \nabla T_k) , \quad [D_\nu^T]_k = h_k \delta z_k^m (\kappa_\nu \delta z^t (T_1)) .$$

- *m*, *t*: location as the middle or top of the layer *k* in the vertical
- ":" in subscripts: multiple vertical layers were used for a vertical operator
- κ_h, κ_ν : diffusion

•
$$\overline{\phi}_k^t = \frac{\phi_{k-1} + \phi_k}{2}$$

• $\delta z_k^m(\phi_{:}^t) = \frac{\phi_k^t - \phi_{k+1}^t}{h_k}$
• $\delta z_k^t(\phi_{:}^m) = \frac{\phi_{k-1}^m - \phi_k^m}{(\overline{h})_k^t}$

Tracer Equation	ETD Solver	Numerical Tests	Future Work
	0000		
Exact Solution: Exponential Rosenbro	ck Euler method		
Full ETD Solver			

Denote by T the tracer (temperature) and by $T_n \approx T(t_n)$ the current solution at time t_n . Let

$$\partial_t T = F(T) = A_n T + r_n(T)$$
.

This equation is actually linear (u, h and w are constants), so the remainder is zero, namely

$$\partial_t T = F(T) = A_n T$$
.

In this case, we can simply consider the exponential Euler method to find the solution, thus at the time step n + 1

$$T_{n+1} = T_n + \Delta t \varphi_1(\Delta t A_n) F(T_n) .$$

By taking $A_n = F'[T_n]$ (Exponential Rosenbrock Euler), this method gives the exact solution.

Tracer Equation	ETD Solver	Numerical Tests	Future Work
	0000		
Operator Splitting			

Splitting Scheme - One stage method

The transport and mixing in the vertical direction cause, in general, more restrictive requirements than the ones for the horizontal. Therefore, the linear operator A_n may be split into

$$A_n = A_n^z + A_n^x \, .$$

Thus,

$$\partial_t T = F(T) = A_n^z T + A_n^x T = A_n^z T + r_n(T) .$$

Using exponential Euler, $r_n(T)$ (= $A_n^{\times}T$) is simply neglected, so the solution is given by

$$T_{n+1} = T_n + \Delta t \varphi_1(\Delta t A_n^z) F(T_n) .$$

Tracer Equation	ETD Solver	Numerical Tests	Future Work
	0000		
Operator Splitting			

Splitting Scheme - Two stages method

Using a second stage method following a predictor/corrector approach, we would get

$$T_{n+1}^{1st \, stage} = T_n + \Delta t \varphi_1(\Delta t A_n^z) F(T_n) ,$$

$$T_{n+1} = T_{n+1}^{1st \, stage} + \frac{1}{2} \Delta t \varphi_1(\Delta t A_n^z) (N_{n+1}^{1st \, stage} - N_n) ,$$

where $N_n = F(T_n) - A_n^z T_n$, and $N_{n+1}^{1st \, stage} = F(T_{n+1}^{1st \, stage}) - A_n^z T_{n+1}^{1st \, stage}$, so N takes into account only the contribution from the horizontal terms.

Computationally, to build $N_{n+1}^{1st stage}$ I don't need to construct the full $F(T_{n+1}^{1st stage})$, but only the horizontal terms evaluated at $T_{n+1}^{1st stage}$.

Tracer Equation O	ETD Solver ○○○●	Numerical Tests	Future Work
Operator Splitting			
Matrix A_n^z			

Block diagonal structure of A_n^z :

Figure: Simplified case with 4 horizontal elements and 4 vertical layers.

Pros of a block diagonal structure:

- Solving many small problems instead of a large one.
- 2 Easy for parallelization purposes.

 Tracer Equation
 ETD Solver
 Numerical Tests
 Future Work

 0
 000
 00000000
 00

Numerical Tests - Box shape geometry

Velocity Field $(u, w) = (-\psi_1(x)\psi'_2(z), \psi'_1(x)\psi_2(z))$

$$\psi_1(x) = 1 - \frac{\left(x - \frac{x_{max}}{2}\right)^4}{\left(\frac{x_{max}}{2}\right)^4}, \qquad \psi_2(z) = 1 - \frac{\left(z - \frac{z_{min}}{2}\right)^2}{\left(\frac{-z_{min}}{2}\right)^2}$$

with $x_{max} = 10$ and $z_{min} = -10$.

8/18

Tracer Equation O	ETD Solver	Numerical Tests ○●○○○○○○	Future Work
Box with a circular velocity field			
Numerical Tests -	Box shape geor	netry	

40 layers of height $\Delta z = 0.25$ m $\Delta x = 1$ m so 10 horizontal elements

$$\mathsf{CFL}_x = \frac{\max u \cdot dt}{\Delta x}$$
 and $\mathsf{CFL}_z = \frac{\max w \cdot dt}{\Delta z}$

3 solvers:

- Exponential Rosenbrock Euler (ERE)
- Splitting ETD 2 stages
- RK4 + implicit Euler

Tracer Equation	ETD Solver	Numerical Tests	Future Work
		00000000	
Box with a circular velocity field			

Numerical Tests - Box shape geometry

ERE (dt = 6): $CFL_z = 19.2$, $CFL_x = 2.4$ Splitting ETD 2 stages (dt = 3): $CFL_z = 9.6$, $CFL_x = 1.2$ RK4 + implicit Euler (dt= 0.5): $CFL_z = 1.6$, $CFL_x = 0.2$

Constant CFL ratio:
$$\frac{CFL_z}{CFL_x} = 8$$

	$k_ u=2.5\cdot 10^{-5}$		
	dt	time steps	computational time
ERE	6	750	16.5680
Splitting ETD 2 stages	3	1500	31.8529
RK4 + implicit Euler	0.5	9000	89.3249

Table: Results for the three solvers, all times are in seconds (s).

Note: n. of vectors in the Krylov basis:

4 vectors for the four central elements and 8 for the six external ones.

Tracer Equation

ETD Solver

Numerical Tests

Future Work

Rectangle with a circular velocity field

Numerical Tests - Rectangle shape geometry

Velocity Field $(u, w) = (-\psi_1(x)\psi'_2(z), \psi'_1(x)\psi_2(z))$

with $x_{max} = 40$ and $z_{min} = -10$.

Tracer Equation	ETD Solver	Numerical Tests	Future Work
		00000000	
Rectangle with a circular velocity field			

Numerical Tests - Rectangle shape geometry

40 layers of height $\Delta z = 0.25$ m $\Delta x = 1$ m so 40 horizontal elements

CFL ratio: $\frac{CFL_z}{CFL_x} = 8$

	$k_ u=2.5\cdot 10^{-5}$		
	dt	time steps	computational time
Splitting ETD 2 stages	2.8	5,000	244.0533
RK4 + implicit Euler	0.5	28,000	669.9195

Table: Results for the three solvers, all times are in seconds (s).

Note: n. of vectors in the Krylov basis:

4 vectors for the thirty-four central elements and 8 for the six external ones.

Tracer Equation	ETD Solver	Numerical Tests	Future Work
		000000000	
Lock Exchange			

Lock Exchange:

Test Description:

- 20 layers, each of which has a thickness of 1 m
- Initial condition for velocity: u = 0 in very layer
- Initial condition for temperature:

$$T(x,z) = \begin{cases} 5, & x < 32 \text{ km}, \\ 30, & x \ge 32 \text{ km}. \end{cases}$$

All diffusion are turned off, so the correct solution is where no mixing occurs, and the front propagates with no intermediate temperatures between 5° C and 30° C. With z-level coordinates, the intermediate layers have temperature

in between 5° C and 30° C.

Tracer Equation	ETD Solver	Numerical Tests	Future Work
		000000000	
Lock Exchange			

Lock Exchange test case with $\nu_h = 100$:

Figure: (a) our ETD solver, (b) MPAS Ocean.

Tracer Equation	ETD Solver	Numerical Tests	Future Work
		000000000	
Internal Waves			

Internal Waves:

The initial temperature distribution is $T_0(z) + T'(x, z)$, where

$$T_0(z) = T_{bot} + (T_{top} - T_{bot}) \frac{z_{bot} - z}{z_{bot}}$$
, and

$$T'(x,z) = -A\cos\left(\frac{\pi}{2L}(x-x_0)\right)\sin\left(\pi\frac{z+0.5\Delta z}{z_{bot}+0.5\Delta z}\right),$$

where $T_{bot} = 10.1^{\circ}$ C, $T_{top} = 20.1^{\circ}$ C, $z_{bot} = -487.5$ m, L = 50 km, $x_0 = 125$ km, $x_0 - L < x < x_0 + L$, $\Delta z = 25$ m, and $A = 2^{\circ}$ C.

The perturbation is a single hump of displaced isotherms that initiate symmetric waves propagating out from the center.

Tracer Equation	ETD Solver	Numerical Tests	Future Worl
		00000000	
Internal Waves			

Internal Waves:

Figure: (a) our ETD solver, (b) MPAS Ocean, (c) MITgem , (d) MOM

Tracer Equation O	ETD Solver	Numerical Tests	Future Work ●○
Future Work			
Future Work			

- Further testing of the splitting ETD scheme with two stages.
- Testing the performances of the proposed solver on more realistic applications.
- Simulating the behavior of multiple tracers in addition to the temperature, such as contaminants and salinity.
- Investigating spatial grid refinements so that passive tracer transport (of, e.g., contaminants) can be handled.

Tracer Equation	ETD Solver	Numerical Tests	Future Work
			$\circ \bullet$
References			
References			

- Petersen, M. R., Jacobsen, D. W., Ringler, T. D., Hecht, M. W., & Maltrud, M. E. "Evaluation of the arbitrary LagrangianEulerian vertical coordinate method in the MPAS-Ocean model." *Ocean Modelling*, *86*, 2015, pp. 93-113.
- Ilicak, M., Adcroft, A.J., Griffies, S.M., Hallberg, R.W. "Spurious dianeutral mixing and the role of momentum closure." Ocean Modelling, 45, 2012, pp. 37-58.
- Ringler, T., Petersen, M., Higdon, R.L., Jacobsen, D., Jones, P.W. and Maltrud, M. "A multi-resolution approach to global ocean modeling." *Ocean Modelling, 69*, 2013, pp. 211-232.
- Hochbruck, M. and Ostermann, A. "Exponential integrators." Acta Numerica, 19, 2010, pp.209-286.
- Li, S.J., Luo, L.S., Wang, Z.J. and Ju, L. "An exponential time-integrator scheme for steady and unsteady inviscid flows." *Journal of Computational Physics*, *365*, 2018, pp.206-225.