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Overview

- Background
— Global-scale land C cycle and nutrient constraints
— Plant and microbial dynamics and nutrient competition

— Observations of Photosynthesis Inactive Period (PIP) plant
nutrient uptake

* Modeling approaches and concepts
— CMIP-class models and Relative Demand approach

— Enzyme mediated reactions
— ELMv1-ECA approach

* Results and Implications
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* Gross terrestrial CO,
fluxes are ~10 times
as large as current
anthropogenic
emissions

* Relatively small

biases in land fluxes
have large
Implications on
atmospheric CO,
burden
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Land Models Must Represent a Wide Variety of
Terrestrial Systems and Processes

* Above ground variability and heterogeneity
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Land Models Must Represent a Wide Variety of
Terrestrial Systems and Processes

* Belowground variability and heterogeneity
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Time Scales

8+ Occupied sites
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* How are nutrient controls important to terrestrial
responses to increasing CO,?
— Photosynthesis (carboxylation, ATP)
— Microbial turnover, N fixation, mycorrhizal associations
— Allocation (e.g., investment for P acquisition)
— N losses (e.g., N,O, leaching)

 Observational constraints

— Free Air Carbon Enrichment (FACE) studies
— Fertilization experiments
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Fertilization Experiments

« Many experimental studies have investigated role of N
and P on plant growth

* E.g., LeBauer and Tresseder (2008) meta-analysis of 126
experiments:

Grouping n R
Overall 126 1.29
i Biome 7
Ty ' : Temperate forest 22 1.19
: Tropical forest 16 1.60
Excluding young Hawaiian soils 8 1.20
Young Hawaiian soils 8 2.13
Tundra 10 1.35
3 e Tropical grassland 6 1.26
Desert 3 1.11
Temperate grassland 32 1.53
Wetland 36 1.16
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Fertilization Experiments

* Elser et al. (2007)
performed a meta-
analysis of 173
terrestrial experiments
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Effects on Global C cycle

. Hungate et al. (2003) i
used IPCC TAR
simulation to estimate N
required for additional C
stored to 2100

— Far out-stripped available N
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Effects on Global C cycle
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Effects on Global C cycle

« Wieder et al. (2015) estimated N and N+P limitations on
CMIP5 estimated changes in NPP over 21st Century
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Nighttime and Non-Growing Season
Nutrient Uptake Observations




Nighttime Uptake Observations
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Nighttime Uptake Observations
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Nighttime Uptake Observations

* We identified ~20 isotope-labeling studies
of nighttime nutrient uptake

— All indicate nighttime uptake accounts for ~30
to 60% of total uptake

* No studies contradict this finding
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Non-Growing Season Uptake Observations

* Up to 90% of tundra vascular plant biomass is
belowground, and root production is often delayed
compared to aboveground (lversen et al. 2015; Blume-

Werry et al. 2016)

Blume-Werry et al. (2016)
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* Root infrastructure exists, and can be active, all year
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Non-Growing Season Uptake Observations

* Observational studies demonstrate that plants acquire soil
nutrients well past plant senescence

« E.g., Keuper et al. (2017)
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Non-Growing Season Uptake Observatlons

- E.g., at the NGEE-Arctic Barrow

polygonal tundra site
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Non-Growing Season Uptake Observations

* We identified ~10 isotope-labeling studies
of non-growing season nutrient uptake

— All indicate non-growing season uptake
accounts for ~10 to 50% of annual uptake

* No studies contradict this finding
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* Modeling approaches and concepts
— CMIP-class models, Relative Demand approach

— Enzyme mediated reactions
— ELMv1-ECA approach
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Competitive Interactions
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Competitive Interactions
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Traditional Approach to Represent
Nutrient Competition in Models

 We reviewed 12 nutrient-enabled CMIP6 land models

« All represent nutrient competition with the “Relative
Demand” concept:

— Root and soil microbe competition resolved based on non-nutrient-
constrained demand

— Acquisition scaled by relative demand of all competitors
— Simplifies interactions and is relatively easy to implement

* But, instantaneous Relative Demand approach precludes
non-growing season and nighttime plant nutrient uptake
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New Methods to Model Nutrient
Competition




Single Substrate, Single Enzyme Kinetics

L. A NOTE ON THE KINETICS :
OF ENZYME ACTION. Developed to explain the

By GEORGE EDWARD BRIGGS Michaelis-Menten (1913)
JOHN BURDON SANDERSON HALDANE. :
- observed dynamics

(From the Botanical and Biochemical Laboratories, Cambridge.)
(Received March 9th, 1925.)

ki ky
S+EeC+P+E
kT

1 Briggs and Haldane (1925)

Goal is not to represent each enzymatic reaction on the planet,
but to find theoretically consistent functional-form
representations
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Single Substrate, Single Enzyme Kinetics

Applying the Quasi Steady-State Approximation for
a single substrate and enzyme gives the Michaelis-
Menten kinetics (1913):

Vi
- Ko+ 5
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Single Substrate, Single Enzyme Kinetics

« Studies have found discrepancies between
Michaelis-Menten kinetics and observations

— Cha and Cha (1965); Williams (1973); Suzuki et al.
(1989); Maggi and Riley (2009)

* S0, a number of modifications have been
proposed (e.g., Cha and Cha (1965)):

v — VmaxST
Ks+ E1+ St
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The Equilibrium Chemistry Approximation

- We extended these ideas with the more general
problem of multiple substrates and “consumers”:

Kiy ks
S;+E; &'cii BE; + P
- Assuming: k’“
— QSS

— No binding between C;
» Afirst order approximation is the ECA:

5 Si TE; T
Ij = .
Sk.T k,T
Ks 1+
Wl Z: KS kj Z KS ik (Tang and Riley 2013)
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ECA

~ SiTEi.T
v k=J
. SAT — EiT
Ks,ij (1+ X, Fors + ), Ko
k=1 (J k=1 S.ik

Method facilitates inclusion of an arbitrary number of sorption,
inhibitory mechanisms, diffusion limitations, and microbial traits

% S,ij i max,?
KS’U — k=L Ks iy — Ks L (1 g AT D7 ]K
Z Irt | TDilc, jnjRs,ij
= Kpijk
(Tang and Riley 2013; Tang 2015; Tang and Riley 2017, 2018)
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ECA Application: Tropical Sites

» Soil NO;, NH,*, PO, competition between plants, microbes, and mineral
surfaces in several tropical forests
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ECA Application: Soil °N tracer in an
alpine meadow (Xu et al. 2011)
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Two other land models have also
Implemented the ECA concept for nutrient
competition

— ED2 (Medvigy et al. (in review))

— ORCHIDEE (Huang et al. 2018)
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ELMv1-ECA

» ECA kinetics for nutrient competition

» Dynamic plant allocation responds to resources and
stress

« Dynamic plant stoichiometry based on a large meta-
analysis

:u‘*-'. . : 5
¢ N i
Nutrient Pools Soll NP

Competitors
\““ » Deposition

N/P
CPEC‘ cNP
Litte fall\",s
' e

i NO3 Runoff
et PO RUNOAT
-

Vertical
Transport

— U.S. DEPARTMENT OF
eschng ENERGY
s BERKELEY LAB

Zhu et al. (in revision)




* Results and Implications
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Nighttime Nutrient Uptake

* For example, at the grassland site measured by Schimel
et al. (1989)

(@
N. California (49°N, 122°E) y .
- October % 15?' x10° (b
. A 3 T . T T
i‘ 3 11.85
~ B
7 \ . 11.8
L) “ — — Q
_ ] 5 {175 s
) £y \‘ 2
= 0. . o ) =
o g1l7 g =
£ 2 o H
o {165 D 2
~ Q Q >
o %]16 = a8
$ O 3 -4 =
2{1.55 2 £
z —
z
115
11.45

-0.1

Hour of Day

Riley et al. (2018)

3 U.S. DEPARTMENT OF
E SM Energy Exascale .
Earth System Model EN ERGY
BERKELEY LAB




Short-Term N Uptake Evaluation
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ELMv1-ECA Performance
« GPP Bias

0.67 0.75 0.78
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ELMv1-ECA Performance

 Plant biomass Bias

0.45 0.48 0.74
(b) ELMV1 ECA-CNP bias

i i -
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..............

=15 -10 =5 0 5 10 15
Aboveground Biomass bias (kg m~2)

Zhu et al. (2018)

3 = A U.S. DEPARTMENT OF
E S M Energy Exascale . n
Earth System Model EN ERGY

BERKELEY LA
—



ELMv1-ECA Performance

« Comparison based on Houghton et al. (2015); Zhu and
Riley (2015) Nature Climate Change
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PIP Nutrient Dynamics

« ELMv1-ECA predicted large fractions of annual N and P
uptake occurs during photosynthesis-inactive periods

0 0.1 0.2 0.3 0.4 0.5 0.6
Fraction Annual N Uptake During
Photosynthesis-Inactive Periods

U.S. DEPARTMENT OF

ENERGY

E SS M Energy Exascale
Earth System Model

3 T 00



PIP Nutrient Dynamics

« ELMv1-ECA predicts large fractions of annual N and P
uptake occurs during photosynthesis-inactive periods
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PIP Nutrient Dynamics

« ELMv1-ECA predicts large fractions of annual N and P
uptake occurs during photosynthesis-inactive periods

90
60
30

(e)

Latitude

A 0 02 04 06
—'- ; Fraction Annual P Uptake During

e 55 ; 02 03 0.4 _0'5 o6 Photosynthesis-Inactive Periods
Fraction Annual P Uptake During

Photosynthesis-Inactive Periods

U.S. DEPARTMENT OF

ENERGY

E 3S M Energy Exascale
Earth System Model




Implications of Ignoring PIP Nutrient
Uptake

 Two sets of simulations

— From baseline ELMv1-ECA model, suppress N and P
uptake during PIPs for 10 years

— Fully spinup “no-PIP nutrient uptake” model version,
then allow PIP N and P uptake for 10 years

* Differences from 2 baseline simulations indicate
relative magnitude of PIP nutrient uptake effects
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Implications of Ignoring PIP Nutrient
Uptake: Ecosystems Become N
“Leakier”

Increased losses:
% @ 57—-7.2TgNy" of
“ N,O

0 — 2.4 10 3.0 Pg CO,-
: s 0 equivalent y-
0 0.05 0.1 | 0l15 0.2 OA(()I.‘JOSO(;ILig;gn)O‘z - Current Iand C Sink:
A(N,O Emission) (gN m™? yr™) (gil m2yr) Oto 12 Pg_COZ y-1
— ~25% to >100% of the
current land CO, sink
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Implications of Ignoring PIP Nutrient
Uptake: Ecosystems Become N
“Leakier”

o |ncreased losses:
« 16-19TgN y'of N

leached
¥ 0.4
0 0.1 0.2 0.3 0.4 A(N Leached)
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High-Latitude Non-Growing Season Uptake

* 5to >50% of annual N and P uptake occurs
outside of growing season

- Large variation between plant functional types

—

—te L
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Summary

* Photosynthesis-Inactive Period (nighttime and non-
growing season) nutrient uptake accounts for 20-60% of
annual uptake

— ~45% NPP-weighted global average

* Ignoring this process, as is done in all CMIP6 models
reviewed and ELMv1-CTC (i.e., those using a Relative
Demand approach), leads to:

— Biased ‘leaky’ terrestrial ecosystems: N leaching (16 - 19 TgN y1)
and N,O emissions (5.7 — 7.2 TgN y)

— This N,O emission bias has a GWP equivalent of ~25% to >100%
of the current terrestrial CO, sink

— Potentially large effects on modeled terrestrial C exchanges with
the atmosphere
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