Marine/sea ice BGC in E3SM

Shanlin Wang, Mathew Maltrud, Nicole Jeffery, Jonathan Wolfe
Ocean/sea ice BGC Team
Los Alamos National Laboratory
June 14, 2018
The oceans take up 20% to 35% of anthropogenic CO₂ (Khatiwala et al., 2009; Sabine et al., 2004).

The oceans play key roles in the global carbon cycle.
Impacts of chlorophyll

Diff SST (present day), prog Chl – clim. Chl

Diff SST (2100, RCP 8.5), prog Chl – clim. Chl

Standard deviation of the SST anomalies

(Kang et al., 2015, An improved ENSO simulation by representing chlorophyll-induced climate feedback)
Impacts of marine biogenic aerosols (DMS)

a) Present day, noS - ctrl

b) 2100 RCP8.5, noS - ctrl
Required for E3SM v1 BGC Science Goal

- Feedback analysis needs land and marine BGC
- Multiple CO₂ tracers allow isolation of carbon cycle processes
- Includes sea ice BGC (Jeffery, Wang, Elliott, Hunke)
 - Leverages porous flow capability of MPAS-CICE
 - Unique component of ESMs with this complexity

Marine surface chlorophyll (mg/m³) simulation on the MPAS global, variable resolution, unstructured mesh.
E3SM Ocean Biogeochemistry Intro

- Import Biogeochemical Elemental Cycling (BEC) into MPAS-O
- Characteristics
 - 5 phytoplankton functional groups (pico, diatoms, diazatrophs, Phaeocystis, implicit coccolithophores)
 - 1 zooplankton group
 - Tracegas and macro-molecules (Lipids, proteins, polysaccharides)

(Chisholm, 2000)
Global Sea Ice Biogeochemistry (zbgc) Intro

- Organics, algae
- Salt
- Dynamic microstructure
- Density/Brine Plume
- NO₃, SiO₄, NH₄, dFe
- DMS
- Snow
- Dust, BC, Fe
- Transport
- Ocean BGC
- Ocean
Ice BGC Profiles: Qualitative Agreement

Arctic
1. Obs *bottom* layer chla peaks
2. **Micro-scale** processes – brine dynamics control nutrient supply at the ice ocean interface

Southern Ocean
1. Obs *surface* chla peaks
2. **Macro-scale** processes -- heavy snow and flooding enrich the upper ice
Contours of total annual sea ice carbon production from year 60 of E3SM fully coupled BGC simulation. The red line is the mean 15% sea ice contour for the year.
Sea ice chlorophyll concentrations from 15 years of fully-coupled spin-up compared with in situ measurements. Colored lines are annual daily averages for a given grid point clustered within 2° of the mean field location. The green shaded region indicates the maximal range of simulated values.
Ocean Nutrient and DIC

- Comparable nutrient distributions
- Further tuning is needed for E3SM ocean BGC
Annual mean chlorophyll (mg/m³)

E3SM

- E3SM (yr 25 -30) and Satellite climatology show similar patterns
- Too little coastal production:
 - Resolution too coarse to represent coastal zone
 - BGC was tuned based on global open oceans
 - Missing processes to resolve coastal BGC

Satellite
Ocean-Atmosphere CO$_2$ Flux (mol C/m2/yr)

- E3SM (yr 25 - 30) and observation-based estimates show similar patterns
- Regional biases
Simulated preindustrial air-sea CO$_2$ flux is ~ - 0.6 PgC/yr (a weak sink), but it should be a weak source.

Seasonal variations of air-sea CO$_2$ fluxes are different:
- Biases in physical states, e.g. SST
- Biases in biological uptake

Currently, there is no feedback from ocean BGC to climate.
What’s next?

Scientific questions:

- What are the impacts of different energy and land use futures on the ocean carbon cycle?
- How the ocean carbon cycle and biological activities will feedback to the coupled system?
- How might coastal marine ecosystems respond to changing terrestrial and atmospheric inputs?
What is the impact of ice bgc on estimates of polar chlorophyll? (results from E3SM-HilAT)

November:
Additional chla is mostly in the sea ice.

January:
Additional chla in the ocean due to sea ice melt release of dissolved Iron.
E3SM is in an optimal position to go beyond quantification of an ice bgc “chla” impact to...

1. Model CO$_2$ exchange directly between the atmosphere-ice and ice-ocean systems (port existing DIC biochemical interactions to MPAS-seaice)

2. **Activate snow-on-ice biochemistry** to address the direct impacts of biogeochemistry on ice albedo and trace gas production from atmospheric chemical sources (Enable direct atmosphere-ice fluxes of trace gases, nitrates, and testing of the snow domain)

3. **Improve carbon sequestration estimates** by allowing for deep penetrative mixing of ice to ocean biogeochemical fluxes (Extend/port the ocean brine plume model for salinity to include ice-brine biochemical variables).
What’s needed?

Short-term plan

- Scale-aware parameterization to improve regional refined BGC simulations, especially for the coastal zone
- Supercycling of biogeochemistry time stepping to reduce the computational cost
- Implement two-way coupling between atmosphere and ocean, and land and ocean to diagnose impacts of anthropogenic activities on ocean BGC and its feedback
What’s needed?

- Improve the representation of organic matter cycling
 - Explicit microbial processes
 - Incorporate model developments by university collaborators
Improve the representation of export fluxes

An alternative to the view that stratification will promote the replacement of diatoms by smaller phytoplankton, reducing carbon productivity and export, has been presented by Kemp and Villareal (2013). These authors noted that some diatoms have adaptations to stratified waters, including ability to grow in low light at deep chlorophyll maxima, vertical migrations between deep nutriclines and illuminated surface depths, and symbioses with nitrogen-fixing cyanobacteria. These strategies promote maintenance of diatom seed populations, which can take advantage of mixing events and bloom, even in oligotrophic subtropical...
Ocean Surface Chla

Difference (polar chla with sea ice bgc – polar chla without)

April

b) May

c) June

-58 -11 -0.23 1.1 19 58

mg chla/m²