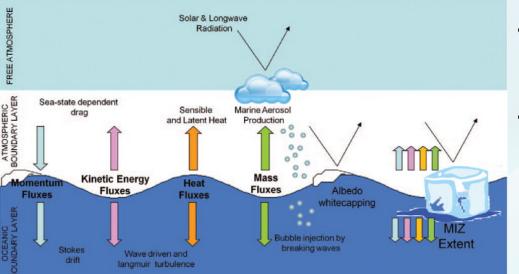
Unstructured Wave Modeling in E3SM

Steven Brus, Phillip J. Wolfram,

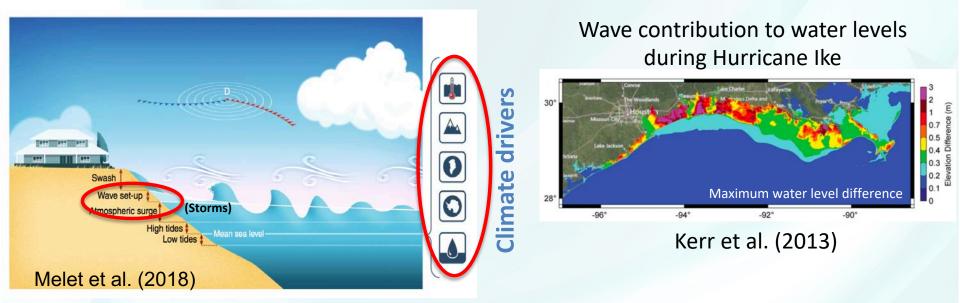

Jon Wolfe, Andrew Roberts, Elizabeth Hunke, Qing Li, Luke Van Roekel, & the E3SM community

E3SM Coastal Waves NGD

Role of Waves in the Coupled Climate System

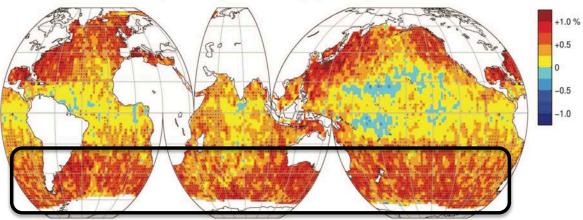
PYCNOCLINE

Wind-wave dependent processes in the coupled climate system Towards coupled wind-wave-AOGCM models


Cavaleri et al. (2012)

 Wind-generated waves are an important interfacial process in the climate system

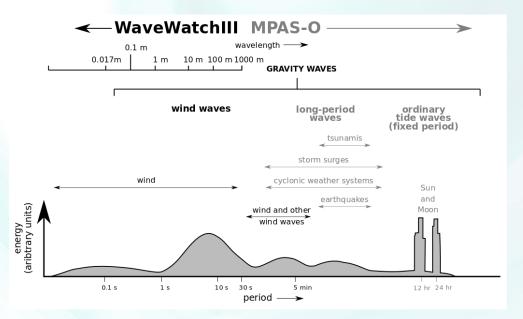
Some cross-component interactions include:


- Ocean vertical mixing
- Sea-state dependent drag
- White-capping albedo
- Sea-ice floe size

Role of Waves in Coastal Flooding

Trend in Global Wave Climate

99th percentile significant wave height (1985-2008)



 Global wave (and wind) extremes have been increasing

• Especially at high latitudes

Young et al. Science (2011)

Wave Energy Spectrum

- Wind waves represent a distinct portion of the energy spectrum
- Wavelengths order 10-100 m
- Periods order 1-10s
- Require separate modeling approach
- Phase averaged paradigm vs. directly modeling sea surface

Spectral Description of Waves

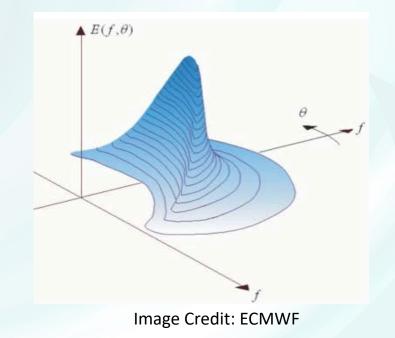
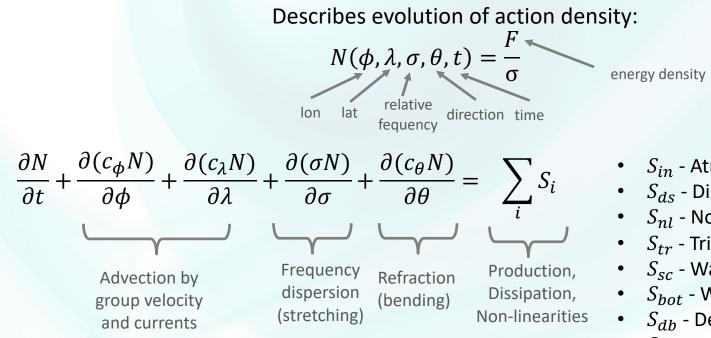




Image Credit: ECMWF

- Actual water surface represented by summation of sinusoidal components with different frequencies and directions
 - Spectrum: Distribution of energy among the components

Spectral (Phase-Average) Wave Modeling

- S_{in} Atmosphere-wave interaction
- S_{ds} Dissipation
- S_{n1} Non-linear wave interactions
- S_{tr} Triad interactions
- S_{sc} Wave scattering
- S_{hot} Wave-bottom interactions
- S_{dh} Depth-limited breaking
- S_{ice} Wave-ice interactions
- Sref Reflection

Mean Wave Parameters

Significant Wave Height

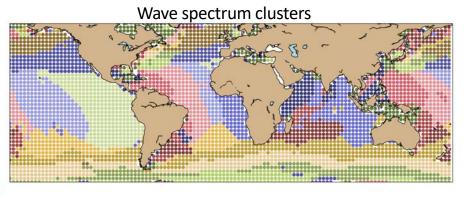
$$H_{s} = 4\sqrt{E}$$

$$E = \int_{0}^{2\pi} \int_{0}^{\infty} F(\sigma, \theta) d\sigma d\theta$$
Swell seas

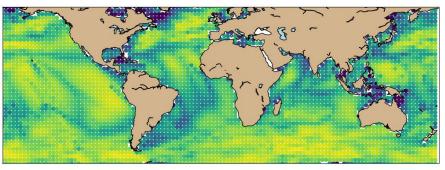
Wind seas

Hs 1.4m Tp wind seas 6s Tp swell seas 10s

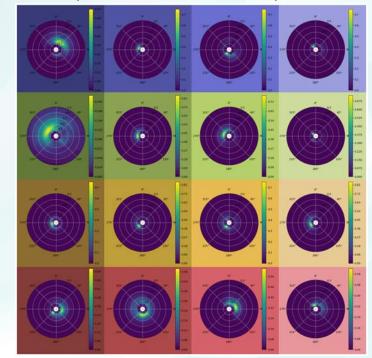
> Image credit: Motion Forecasting


Mean Wave Period

$$T_m = E^{-1} \int_{0}^{2\pi} \int_{0}^{\infty} \sigma F(\sigma, \theta) d\sigma d\theta$$


Mean Wave Direction

$$\theta_m = \tan^{-1} \frac{\int_0^{2\pi} \int_0^\infty \sin\theta F(\sigma, \theta) d\sigma d\theta}{\int_0^{2\pi} \int_0^\infty \cos\theta F(\sigma, \theta) d\sigma d\theta}$$


Global Wave Spectra ML Classification

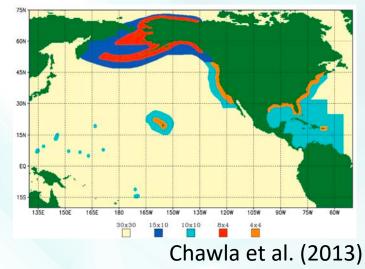
Correlation Coefficient

Representative cluster wave spectra

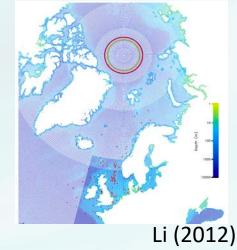
0.0

- 0.8

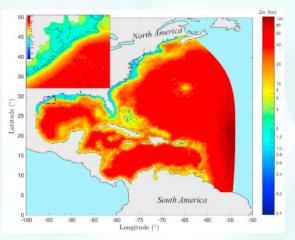
0.6


0.4

0.2


10

WaveWatchIII Mesh Configurations

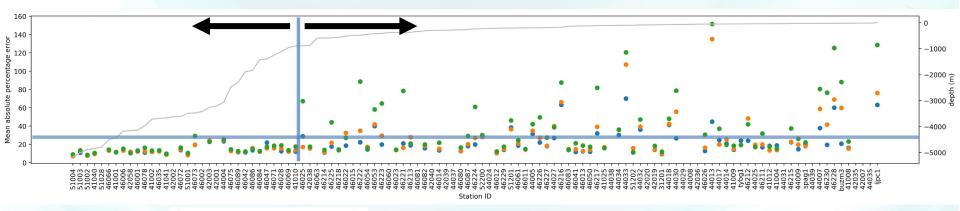

Current operational WWIII nesting

Spherical Multi Cell WWIII grid

Regional Triangular Mesh

Abdolali et al. (2020)

Integration of WaveWatchIII into E3SM


- WaveWatchIII is now available via GitHub: <u>https://github.com/NOAA-EMC/WW3</u>
- Latest version 6.07 has been made a submodule in E3SM
- WaveWatchIII uses "switches" to define physics/formulation options. Source code must be pre-processed to generate compliable code.
- Several auxiliary programs are necessary for processing grids, initial conditions, and output

	TYPE SRCP	
	REAL	:: WWNMEANPTAIL, SSTXFTFTAIL
!/ST1		:: SINC1, SDSC1
!/ST2	REAL	:: ZWIND, FSWELL, SHSTAB, &
!/ST2		OFSTAB, CCNG, CCPS, FFNG, FFPS, &
1/ST2		CDSA0, CDSA1, CDSA2, SDSALN, &
!/ST2		CDSB0, CDSB1, CDSB2, CDSB3, FPIMIN, &
!/ST2		XFH, XF1, XF2
!/ST3	INTEGER	:: SSDSISO, SSDSBRFDF
!/ST3	REAL	:: AALPHA, BBETA, ZZ0MAX, ZZ0RAT, ZZALP,&
!/ST3		SSINTHP, TTAUWSHELTER, SSWELLF(1:6), &
!/ST3		SSDSC1, SSDSC2, SSDSC3, SSDSBR, &
!/ST3		SSDSP, WWNMEANP, SSTXFTF, SSTXFTWN, &
!/ST3		FFXPM, FFXFM, &
!/ST3		SSDSC4, SSDSC5, SSDSC6, DDELTA1, &
!/ST3		DDELTA2, ZZWND
!		
!/ST4	INTEGER	:: SSWELLFPAR, SSDSISO, SSDSBRFDF
!/ST4	INTEGER, POINTER	<pre>:: IKTAB(:,:), SATINDICES(:,:)</pre>
!/ST4	REAL, POINTER	<pre>:: DCKI(:,:), SATWEIGHTS(:,:),CUMULW(:,:),QBI(:,:)</pre>
!/ST4	REAL	:: AALPHA, BBETA, ZZ0MAX, ZZ0RAT, ZZALP,&
!/ST4		SSINTHP, TTAUWSHELTER, SSWELLF(1:7), &
!/ST4		SSDSC(1:11), SSDSBR, &
!/ST4		SSDSP, WWNMEANP, SSTXFTF, SSTXFTWN, &
!/ST4		FFXPM, FFXFM, FFXFA, FFXFI, FFXFD, &
!/ST4		SSDSBRF1, SSDSBRF2, SSDSBINT, SSDSBCK, &
!/ST4		SSDSHCK, SSDSABK, SSDSPBK, SSINBR
!/ST4	REAL	:: ZZWND
!/ST4	REAL	:: SSDSCOS, SSDSDTH, SSDSBR2, SSDSBM(0:4)
1		
!/ST6	REAL	:: SIN6A0, SDS6A1, SDS6A2, SWL6B1, &
!/ST6		SIN6WS, SIN6FC
!/ST6	INTEGER	:: SDS6P1, SDS6P2
!/ST6	LOGICAL	:: SDS6ET, SWL6S6, SWL6CSTB1
1		
!/STX	REAL	:: DUMMY
	END TYPE SRCP	

Importance of Regional Refinement

Deeper (open ocean): Accurate with lower resolution

Shallower (coastal): Requires higher resolution

1/2 degree1 degree2 degree

- Structured lon-lat meshes
- June-August 2005 CFSR winds
- Comparison with NDBC buoys

Global Unstructured WaveWatchIII Meshes

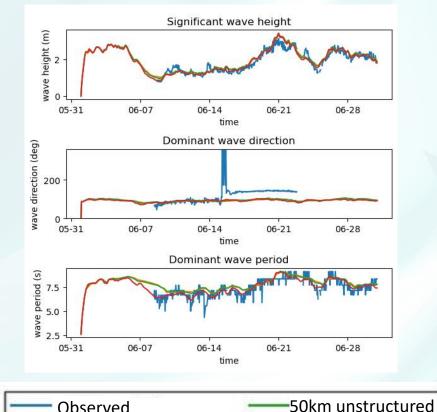
Quasi-uniform 50 km

Regionally Refined Delaware Bay

240km – 4km

Meshes generated with OceanMesh2D software: https://github.com/CHLNDDEV/OceanMesh2D

Significant wave height wave height (m) 5.0 0.0 05-31 06-07 06-14 06-28 06-21 time Dominant wave direction wave direction (deg) 200 05-31 06-07 06-14 06-21 06-28 time Dominant wave period wave period (s) 10 5 05-31 06-07 06-14 06-21 06-28 time 50km unstructured Observed ½° structured 100km unstructured


- June-August 2005
- CFSR winds (1/2 degree resolution)
- Comparison with NDBC buoy data

Significant wave height wave height (m) 2 05-31 06-07 06-14 06-21 06-28 time Dominant wave direction wave direction (deg) 200 06-28 05-31 06-14 06-21 06-07 time Dominant wave period wave period (s) 10 5 05-31 06-07 06-14 06-21 06-28 time 50km unstructured Observed ½° structured 100km unstructured

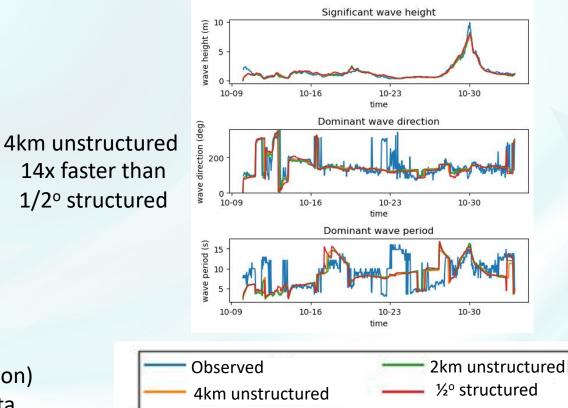
- June-August 2005
- CFSR winds (1/2 degree resolution)
- Comparison with NDBC buoy data

½° structured

Observed

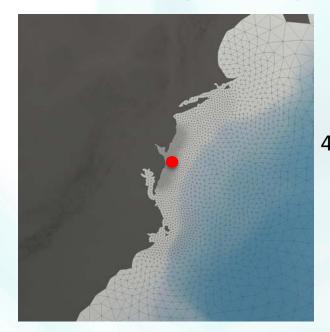
100km unstructured

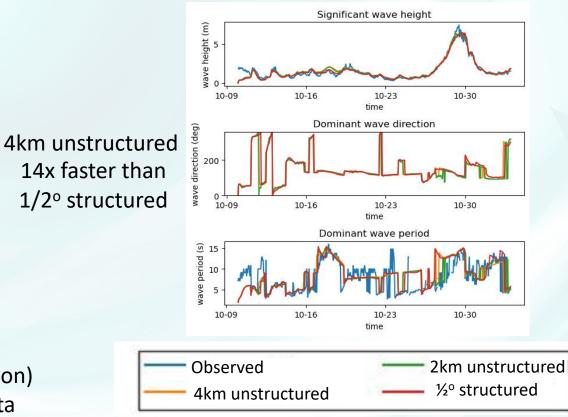
- June-August 2005
- CFSR winds (1/2 degree resolution) ٠
- Comparison with NDBC buoy data



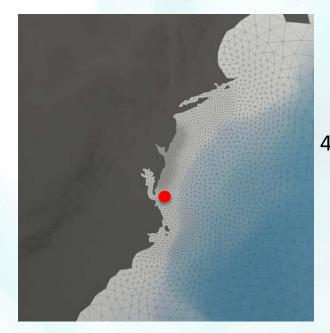
Significant wave height wave height (m) o N 05-31 06-07 06-14 06-21 06-28 time Dominant wave direction wave direction (deg) 200 05-31 06-07 06-14 06-21 06-28 time Dominant wave period 20 wave period (s) 10 06-21 06-07 06-14 06-28 05-31 time 50km unstructured Observed ½° structured 100km unstructured

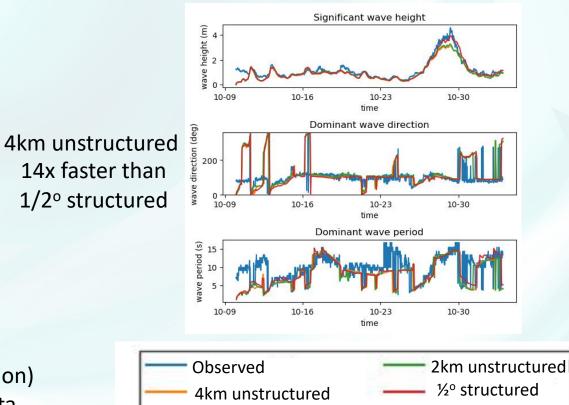
- June-August 2005
- CFSR winds (1/2 degree resolution)
- Comparison with NDBC buoy data


Global Regionally Refined Mesh Validation



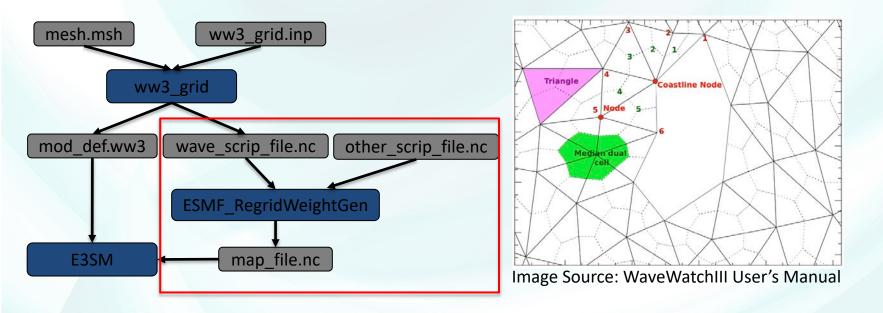
- Hurricane Sandy 2012
- CFSv2 winds (0.2 degree resolution)
- Comparison with NDBC buoy data

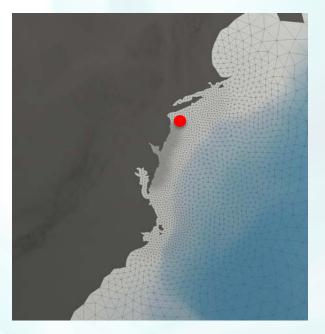

Global Regionally Refined Mesh Validation



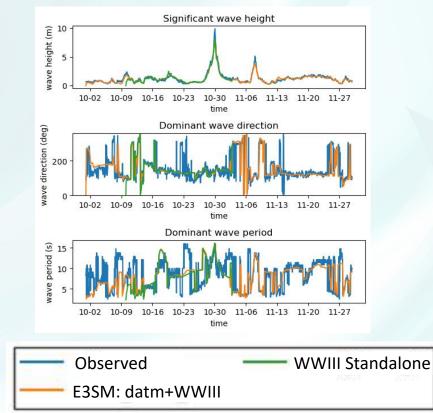
- Hurricane Sandy 2012
- CFSv2 winds (0.2 degree resolution)
- Comparison with NDBC buoy data

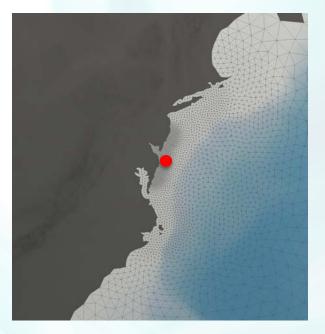
Global Regionally Refined Mesh Validation

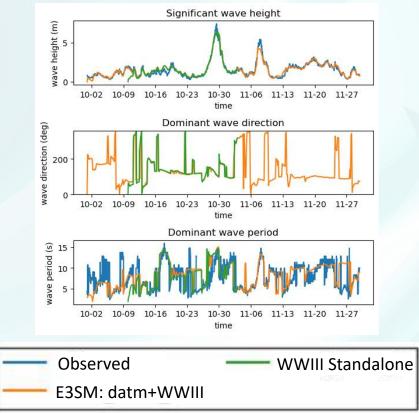



- Hurricane Sandy 2012
- CFSv2 winds (0.2 degree resolution)
- Comparison with NDBC buoy data

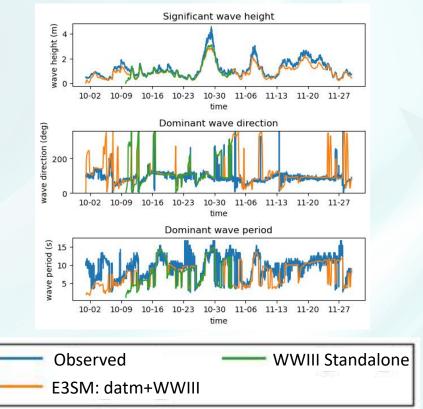
WaveWatchIII Coupler Mapping


- WaveWatchIII already uses SCRIP internally for mapping nested grids
- Repurposed for generating mapping files for E3SM


Data Atmosphere + Unstructured Waves Compset


- Hurricane Sandy 2012
- CFSv2 winds (0.2 degree resolution)
- Comparison with NDBC buoy data

Data Atmosphere + Unstructured Waves Compset


- Hurricane Sandy 2012
- CFSv2 winds (0.2 degree resolution)
- Comparison with NDBC buoy data

Data Atmosphere + Unstructured Waves Compset

- Hurricane Sandy 2012
- CFSv2 winds (0.2 degree resolution)
- Comparison with NDBC buoy data

Summary

- Waves are an important interfacial process in the climate system
- High latitude wave heights are increasing
- E3SM will have the first coupled, global unstructured WaveWatchIII configuration
- Our initial validation results have shown promise in balancing accuracy and cost

Next Steps

- Performance evaluation of global unstructured configuration
- One-way coupling from ocean and sea-ice to waves (verification)
- Two-way coupling between waves, ocean, and sea ice (G case+waves)
- Collaborate with InterFACE project on wave/ice couplings and simulations