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• Uncertainty comes from Multi-
model ensembles

• Large spread in outputs
• Many quantities of interest
• Little formal uncertainty 

quantification (UQ)
– Expensive model evaluation
– High dimensionality

UQ challenges in E3SM and SciDAC:
• What processes drive uncertainty?
• What accounts for the key 

differences among models?
• Can model calibration using 

observations (e.g. satellite data) 
reduce uncertainty?

Overview and motivation:  CBGC models

Friedlingstein et al (2014)

Burrows et al (in review)
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Overview and motivation:  Land BGC

• ELM is an increasingly 
complex model with 
many processes

• Large ensembles are 
needed for UQ 

• For BGC simulation, 
spinup limits ensemble 
size.

• Surrogate models can 
increase the efficiency of 
sensitivity analysis and 
calibration

Biogeochemistry
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Model infrastructure to enable UQ
• E3SM single gridcell

– Default v1 (FLUXNET sites)
– FATES (Boreal Alaska site)
– Using mpi4py as part of Offline 

Land Model Testbed (OLMT) to 
manage ensembles and post-
process

– 100s to 1000s of ensembles
• Global ELM

– SP version so far 
– Modified OLMT framework
– Low resolution (1.9x2.5)
– 10 ELM parameters
– Photosynthesis/leaf parameters
– 200 simulations, GPP as QoI
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Model parameter ensemble

• fff
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Parameter description Min Max Default range

flnr Fraction of leaf N in RuBisCO 0.03 0.25 [0.042,0.176]

mbbopt Ball-Berry slope parameter 4.0 13.0 [4,9]

bbbopt Ball-Berry intercept parameter 1000 40000 [10000,40000]

roota_par Rooting depth distribution 
parameter

1 10 [3,10]

vcmaxha Activation energy for Vcmax 50000 90000 72000

vcmaxse Entropy for Vcmax 640 700 670

dayl_scaling Day length scaling parameter 1.0 2.5 2.0

dleaf Characteristic leaf dimension 0.01 0.1 0.04

xl Leaf/stem orientation index -0.6 0.8 [-0.5,0.65]



Mean ensemble GPP
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GPP (gC m-2 day-1)
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GPP standard deviation

GPP standard deviation (gC m-2 day-1)



Global Sensitivity Analysis (GSA)
enables parameter selection

… otherwise called Sobol indices, variance-based decomposition
Attribute fractions of output variance to input parameters

• i.e., how much output variance 
would reduce if a given parameter 
is fixed to its nominal value

• also generalizes to joint sensitivities: 
joint parameter impact to a given QoI

Param 1 Param 2 P 3 Param 4 Param 5
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Sensitivities of global average GPP
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Uncertainty Propagation 
… enabled by Surrogate Models

• Forward predictions:
• surrogate models, 
• sensitivity analysis, 
• parametric uncertainty

Comp. model

Input parameters Output prediction

Work with the model as a black-box (non-intrusive): 
create an ensemble of simulations with varying/perturbing   

Never analyze the ensemble directly: 
build a surrogate first
… otherwise called proxy, metamodel, 
emulator, response surface, supervised ML
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Spatio-temporal surrogate model via 
Karhunen-Loève expansions

• 3183 active land cells over 180 months is > 500,000 outputs

• Karhunen-Loève expansions help reduce dimensionality due to strong 
spatio-temporal correlations (think of Principal Component Analysis 
in stochastic space) 

• Instead of 500K surrogates, we build  about 2K surrogates, 
one for each eigen-component

• End result: a single surrogate, resolved in space and time, 
with about 5% relative error compared to true ELM

• Surrogate ELM is extremely cheap to evaluate and is being used 
online to calibrate the parameters



Surrogate model accuracy
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Relative error of the surrogate model averaged over all land cells
Highest errors in August (most complex behavior)



Gridcell-level sensitivities (tropical)

• ff
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BR-Sa1

BW-Ghm
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Gridcell-level sensitivities (temperate)

US-Ha1

US-SO2



Globally mapped sensitivities
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Globally mapped sensitivities
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Globally mapped sensitivities
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Globally mapped sensitivities



We have gridded observations and 
benchmarks
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• Directly comparable with model GPP output
• Can be used for single gridcell to global-scale calibration
• Methods extensible to other ILAMB products

ILAMB GPP



Inverse modeling: tuning model parameters 
with observational data

Comp. model

Input parameters Output prediction

Meas. model

Observed data

• Forward predictions:
• surrogate models
• sensitivity analysis,
• parametric uncertainty

• Inverse modeling: 
• parameter tuning
• calibration
• data noise incorp.
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Bayesian approach is main tool for 
parameter calibration

• Bayesian inference allows incorporation of various sources of uncertainty
• Markov chain Monte Carlo (MCMC) for building posterior PDFs

– Non-linear models à Ugly high-dimensional parameter PDFs, but 
advanced MCMC methods are available

• Requires many online, mostly serial evaluations of the model
– This is why surrogate models are handy!

• Predictive uncertainty decomposition augmented with surrogate error 
and observational noise 

Param 1 Param 2 Param 4 Param 5 Surr. error Data noise

Prediction variance 
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Initial calibration at a single gridcell

• Calibrated model is able to reproduce the observed with high accuracy
• Posterior uncertainties are greatly reduced
• Next test:  By PFT and by gridcell calibrations.  



Calibration with Embedded
Model Structural Error

• Model structural error embedding approach [Sargsyan et. al., 2015, 2018] 
• Embedded, but not intrusive, i.e. black-box
• Physics-driven model correction
• Meaningful extrapolation to full set 

of QoI predictions
• Disambiguation between model error and 

data noise
• Core FASTMath capability

• Calibration of sELM with FLUXNET sites data
• Model error is the dominant uncertainty component
• Removes parameter biases and overfitting
• Points to submodels/parameters that are the culprit

KUKU

Forward modeling

Inverse modeling

Calibration

Preprocess

Prediction

fi(�)

Model
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Surrogate
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Embedded
model

GSA/BF
Likelihood D = {gi}

Data
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Prior p(�,↵)

h(�+ �(↵; ⇠))

Any QoI

Prediction p(h|D)
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Improving surrogate models further:
LSTM architecture complies with 

known physical connections
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Vanilla LSTM: 
each QoI is dealt with separately

Physics-informed LSTM: 
accounts for QoI connections
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Physics-informed LSTM neural network 
accurately resolves time evolution

Loss function of vanilla LSTM and 
physics-informed LSTM Comparison of sELM and NNs

LSTM NNs approximates the sELM behaviour
with respect to perturbations in 47 parameters, with a fraction of the cost



Sensitivity analysis:  ELM-FATES
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GSA across many QoIs, PFTs
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• Includes FATES-hydro
• Nearly 200 parameters!



Sensitivity analysis, ELM-CROP
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• Breaking down model UQ to 
manageable problems?

• Develop ELM “functional units” 
for process submodels

• Develop rapid evaluation 
capability using surrogates for:

– Key individual model outputs
– Each process submodel

• Hierarchical calibration
– ELM complexity is high
– Calibrate submodels using 

process-specific observations
– Calibrate ELM using integrative 

observations (e.g. NEE).
• Enable ecological forecasting

Phenology Allocation
/growth

Hydrology and soil 
physics 

Root function

Canopy 
processes

Litter and SOM
Decomposition

Nutrient 
cycling

Disturbance

CH4 
cycling

Single site Multiple sites Regional 

An ELM UQ testbed
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Joint work with the ORNL TES SFA



Toward Coupled UQ 
• Well-tuned/calibrated offline component 

models may perform poorly in coupled system
• Biases related to other components or 

coupling between them

• Large computational demand for individual 
experiments (including spinup)

• Additional outputs/dimensions – even larger 
ensembles needed.  

• Machine learning --> meaningful UQ?
• First step in OSCM :  SCM land-atmosphere

Offline  CNP-CTC LH bias

CBGC CNP-CTC LH bias
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Sensitivity analysis of SCM at GOAmazon site



Summary
• Forward UQ (uncertainty propagation): 

– Surrogate modeling is the key 
• For point/site simulations, we have well-developed workflows and willing to 

work with core, NGD and ecosystem projects.
• With a combination of approaches, we can achieve high surrogate accuracy 

with global relevance using a relatively  small number of simulations.
– Global sensitivity analysis or variance decomposition for parameter dimension 

reduction
– Extending global work to BGC:  Possible but computational resources needed

• Inverse UQ (parameter calibration):
– Bayesian model calibration with Markov chain Monte Carlo (MCMC) sampling
– Expense is alleviated by using an accurate surrogate: makes ELM calibration 

feasible
– Key advances: Spatially explicit surrogates, incorporating model structural error

• “MODEX” loop enabler: use attributable model prediction uncertainties to optimally 
locate new observation locations.
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