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Project tasks and schedule 
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Target: 1km2 grid resolution over N. America

Current ELM offline grid: 0.5°



Target: 1km2 grid resolution over N. America

Annual 
Average Tmax

(2019)

~ 22,000,000 gridcells ~ 10,000 gridcells



Target: 1km2 grid resolution over N. America

Annual 
Average Tmax

(2019)

Annual Total 
Prcp (2019)

High-resolution surface weather inputs:
• Updated with new station data for 1980-

2019
• Corrected time-of-observation biases in 

daily temperature
• Corrected temperature sensor biases in 

SNOTEL data record
• Applied temporal downscaling based on 

GSWP3



Computational strategy: OpenACC on Summit

Each Summit node has 6 NVIDIA Volta V100 
GPUs. We plan to have 1 ELM MPI task per 

GPU, so 6 MPI tasks per node

Each GPU has 80+ Streaming 
Multiprocessors (SMs) and 16 GB of 

shared memory (HBM2)
Each SM has 32 double precision cores, 

which can be “over-subscribed” with threads 
to an extent that depends in part on 

availability of register space and heap space.

Our approach is to use the existing “clumps” parallelism in ELM (traditionally 
connected to OpenMP), and tie it to the double precision cores on the V100 
GPUs via OpenACC, using 1 gridcell per clump.



Parallel strategy and data management
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OpenACC implementation within ELM timestep

• Using OpenACC deep copy method to move 
entire ELM data structure (all clumps) onto GPU.

• Sequential execution of major science routines in 
ELM run step on GPU (6 clump-parallel regions).

• Update CPU on exit from GPU block, to allow I/O
• Using the Functional Unit Testing framework 

developed by Dali Wang during E3SM Phase 1 
to rapidly prototype the GPU kernel

• Initial performance tests showed near-ideal 
scaling of compute time out to ~10,00 clumps 
per GPU.

• As expected, data transfer time scales with 
number of clumps per GPU.

Initialize

Update

Timestep

CPU

GPU

Sub-Step1

Sub-Step 2

…
Clump-
parallel 



Timing for Data Movement and Computation
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Number of Streaming Multiprocessors  (in one GPU)
Each SM has ~120 sites

Time required for initial data 
movement onto GPU scales with 
the number of threads (gridcells) 

Time required for computation is 
level as more of the SMs on a GPU 
device are used to do more work



Baseline time profiling
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The dominance of data transfers and history update decreases with 
longer compute periods 



Summary of problem size and timing
• Memory constraints mean that we can get about 2000 gridcells to run in 

parallel on a single Summit GPU device
• With 6 devices per node, 12K gridcells per node
• With 22M gridcells, we could efficiently use about 1800 Summit nodes (out of 

4600)

• Current GPU timing is 160 seconds per model day, or about 1.5 SYPD
• Many opportunities for additional optimization (discussed later), but with 

current timing:
• 200 year spinup simulation on Summit would take about 5 months



Accelerating ELM with OpenACC(Data)

Approach:  1 MPI task controls 1 GPU and use existing 
clump structure to have each GPU thread compute 1 
gridcell.

● Module variables must be in !$acc declare 
directive.

● Deepcopy enabled via compilation flag
○ Currently, PGI couldn’t get correct structure for all 

derived types — even for types that held parameter
○ Changing to pointer elements works

● Unstructured Data Regions used to transfer data 
only at beginning and end of run and history tapes 
when needed.

Changing to pointers Example

type, public :: DecompCNParamsType

real(r8), pointer :: cn_s1_cn => null()

real(r8), pointer :: cn_s2_cn => null()

Directive must accompany variable declaration
type(DecompCNParamsType) :: DecompCNParamsInst
!$acc declare create(DecompCNParamsInst)



Accelerating ELM with OpenACC(Routines)
● Every routine used in a GPU region must have GPU 

code generated — including intrinsic functions
○ Removed custom timing, error checking, and I/O 

functions.
○ Device code for most routines is generated by the 

!$acc routine seq directive.
○ Slicing arrays of derived types is not supported —

must make local pointer first (e.g., associate clause) 
○ Class methods are not supported — must create 

separate routine and pass variable as argument.

● Developed python script to recursively parse 
routines to add acc directives, make consistent 
changes and identify class methods to streamline 
adding new modules/developments

● Introduced clump parallelism to code that didn’t 
support it, such as history and accumulation buffer 
update.

Class Method example
!call col_nf%Summary(bounds, num_soilc, filter_soilc)
call colnf_summary_acc(col_nf,bounds, num_soilc, filter_soilc, 
dt)

Array slicing (error due to implicit intrinsic)
!call c2g(bounds,  col_cf%nee(begc:endc), &
! lnd2atm_vars%nee_grc(begg:endg), &
! c2l_scale_type= unity, l2g_scale_type=unity)
call c2g(bounds, nee(begc:endc) , nee_grc(begg:endg) , &

c2l_scale_type= unity, l2g_scale_type=unity)



Performance Optimization
● Allocating dynamic memory is slower on GPU than 

CPU.

● Highest priority optimization is slight refactoring to 
replace local arrays with scalars

○ If can’t, then allocate based on relevant filter 
and not entire clump.

○ Has greatly increased performance in routines 
done so far –many more to go.

● Next steps:

○ Enable compiler optimizations such as in-
lining, unrolling, etc.. (-OX flags crash)

○ Increase parallelism for routines that are most 
compute intensive (e.g., history buffer is 
parallelized across fields as well as gridcells)

○ Task parallelism and better data locality for 
routines that aren’t compute heavy but with 
hundreds of global memory accesses.

○ Fine tuning of OpenACC parameters:  gangs, 
registers, etc.. 

real(r8) :: diffus (bounds%begc:bounds%endc,1:nlevdecomp+1)
real(r8) :: adv_flux(bounds%begc:bounds%endc,1:nlevdecomp+1)
real(r8) :: a_tri(bounds%begc:bounds%endc,0:nlevdecomp+1)
real(r8) :: b_tri(bounds%begc:bounds%endc,0:nlevdecomp+1)
real(r8) :: c_tri(bounds%begc:bounds%endc,0:nlevdecomp+1)
real(r8) :: r_tri(bounds%begc:bounds%endc,0:nlevdecomp+1)
real(r8) :: d_p1_zp1(bounds%begc:bounds%endc,1:nlevdecomp+1)
real(r8) :: d_m1_zm1(bounds%begc:bounds%endc,1:nlevdecomp+1)
real(r8) :: f_p1(bounds%begc:bounds%endc,1:nlevdecomp+1)
real(r8) :: f_m1(bounds%begc:bounds%endc,1:nlevdecomp+1)
real(r8) :: pe_p1(bounds%begc:bounds%endc,1:nlevdecomp+1)
real(r8) :: pe_m1(bounds%begc:bounds%endc,1:nlevdecomp+1)
real(r8) :: dz_node(1:nlevdecomp+1)
real(r8) :: conc_trcr(bounds%begc:bounds%endc,0:nlevdecomp+1)

After:
real(r8) :: diffus_j, diffus_jm1, diffus_jp1
real(r8) :: adv_flux_j,adv_flux_jm1, adv_flux_jp
real(r8) :: a_tri(num_soilc,0:nlevdecomp+1)
real(r8) :: b_tri(num_soilc,0:nlevdecomp+1)
real(r8) :: c_tri(num_soilc,0:nlevdecomp+1)
real(r8) :: r_tri(num_soilc,0:nlevdecomp+1)
real(r8) :: d_p1_zp1
real(r8) :: d_m1_zm1
real(r8) :: pe_p1 
real(r8) :: pe_m1 
real(r8) :: dz_node
real(r8) :: conc_trcr(num_soilc,0:nlevdecomp+1) !



Underway now:
• 40,000 gridcell (subset) simulations on Summit using production datasets to 

evaluate input data staging
• Continued OpenACC optimization at subroutine level


