
Progress update: High-resolution offline
ELM simulation over North America

Peter Thornton, Peter Schwartz, Dali Wang, Rupesh Shrestha,
Michele Thornton, Shih-Chieh Kao, Marcia Branstetter,
Fengming Yuan,

ORNL

Project tasks and schedule
Year Month Task 1 Task 2 Task 3 Task 4 Task 5

2019 Jun

Construct
hi-res

surface
weather
forcings,
including
sub-daily

down-
scaling

Assemble
other hi-res

surface
data

Jul

Aug

Adapt ELM
with

coupler
bypass

method for
GPU

system
(Summit)

Sep

Oct

Nov
Apadpt
ELM I/O
methods
for GPU
system

(init,
history and

restart)

Dec

2020 Jan

Feb

Execute NA
spinup runs

Mar

Apr

May

Target: 1km2 grid resolution over N. America

Current ELM offline grid: 0.5°

Target: 1km2 grid resolution over N. America

Annual
Average Tmax

(2019)

~ 22,000,000 gridcells ~ 10,000 gridcells

Target: 1km2 grid resolution over N. America

Annual
Average Tmax

(2019)

Annual Total
Prcp (2019)

High-resolution surface weather inputs:
• Updated with new station data for 1980-

2019
• Corrected time-of-observation biases in

daily temperature
• Corrected temperature sensor biases in

SNOTEL data record
• Applied temporal downscaling based on

GSWP3

Computational strategy: OpenACC on Summit

Each Summit node has 6 NVIDIA Volta V100
GPUs. We plan to have 1 ELM MPI task per

GPU, so 6 MPI tasks per node

Each GPU has 80+ Streaming
Multiprocessors (SMs) and 16 GB of

shared memory (HBM2)
Each SM has 32 double precision cores,

which can be “over-subscribed” with threads
to an extent that depends in part on

availability of register space and heap space.

Our approach is to use the existing “clumps” parallelism in ELM (traditionally
connected to OpenMP), and tie it to the double precision cores on the V100
GPUs via OpenACC, using 1 gridcell per clump.

Parallel strategy and data management

External
Forcing Data

Global data staging
Domain decomposition
Data management and

communication

SM

GPU GPU
SM

GPU

Sub-
communicator

Data staging on each node
Deepcopy (data/code)

Data update on each node

Site ELM on
SM/cores

Deepcopy (data)

Site ELMs Site ELMs

E3SM
Coupler-by-pass

High-
performance
file systems

GPUGPU

Data staging

Data update

Site ELMs Site ELMs

MPI

OpenACC/MPI OpenACC/MPI

NVMeNVMe

OpenACC implementation within ELM timestep

• Using OpenACC deep copy method to move
entire ELM data structure (all clumps) onto GPU.

• Sequential execution of major science routines in
ELM run step on GPU (6 clump-parallel regions).

• Update CPU on exit from GPU block, to allow I/O
• Using the Functional Unit Testing framework

developed by Dali Wang during E3SM Phase 1
to rapidly prototype the GPU kernel

• Initial performance tests showed near-ideal
scaling of compute time out to ~10,00 clumps
per GPU.

• As expected, data transfer time scales with
number of clumps per GPU.

Initialize

Update

Timestep

CPU

GPU

Sub-Step1

Sub-Step 2

…
Clump-
parallel

Timing for Data Movement and Computation

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500

Tim
e f

or
Da

ta
Mo

vem
en

t (m
s)

Number of Simulation Sites

0

10

20

30

40

50

60

70

0 5 10 15 20

Co
mp

uti
ng

 tim
e (

ms
)

Number of Streaming Multiprocessors (in one GPU)
Each SM has ~120 sites

Time required for initial data
movement onto GPU scales with
the number of threads (gridcells)

Time required for computation is
level as more of the SMs on a GPU
device are used to do more work

Baseline time profiling

0

100

200

300

400

500

600

700

800

900

1000

tim
e(

m
s)

Average Time Spent for Each Category (One Hour)

Data Transfers History Update History Compute Sim Setup Physics/Chem

0

5000

10000

15000

20000

25000

tim
e(

m
s)

Total Time Spent for Each Category (One Day)

Data Transfers History Update History Compute Sim Setup Physics/Chem

The dominance of data transfers and history update decreases with
longer compute periods

Summary of problem size and timing
• Memory constraints mean that we can get about 2000 gridcells to run in

parallel on a single Summit GPU device
• With 6 devices per node, 12K gridcells per node
• With 22M gridcells, we could efficiently use about 1800 Summit nodes (out of

4600)

• Current GPU timing is 160 seconds per model day, or about 1.5 SYPD
• Many opportunities for additional optimization (discussed later), but with

current timing:
• 200 year spinup simulation on Summit would take about 5 months

Accelerating ELM with OpenACC(Data)

Approach: 1 MPI task controls 1 GPU and use existing
clump structure to have each GPU thread compute 1
gridcell.

● Module variables must be in !$acc declare
directive.

● Deepcopy enabled via compilation flag
○ Currently, PGI couldn’t get correct structure for all

derived types — even for types that held parameter
○ Changing to pointer elements works

● Unstructured Data Regions used to transfer data
only at beginning and end of run and history tapes
when needed.

Changing to pointers Example

type, public :: DecompCNParamsType

real(r8), pointer :: cn_s1_cn => null()

real(r8), pointer :: cn_s2_cn => null()

Directive must accompany variable declaration
type(DecompCNParamsType) :: DecompCNParamsInst
!$acc declare create(DecompCNParamsInst)

Accelerating ELM with OpenACC(Routines)
● Every routine used in a GPU region must have GPU

code generated — including intrinsic functions
○ Removed custom timing, error checking, and I/O

functions.
○ Device code for most routines is generated by the

!$acc routine seq directive.
○ Slicing arrays of derived types is not supported —

must make local pointer first (e.g., associate clause)
○ Class methods are not supported — must create

separate routine and pass variable as argument.

● Developed python script to recursively parse
routines to add acc directives, make consistent
changes and identify class methods to streamline
adding new modules/developments

● Introduced clump parallelism to code that didn’t
support it, such as history and accumulation buffer
update.

Class Method example
!call col_nf%Summary(bounds, num_soilc, filter_soilc)
call colnf_summary_acc(col_nf,bounds, num_soilc, filter_soilc,
dt)

Array slicing (error due to implicit intrinsic)
!call c2g(bounds, col_cf%nee(begc:endc), &
! lnd2atm_vars%nee_grc(begg:endg), &
! c2l_scale_type= unity, l2g_scale_type=unity)
call c2g(bounds, nee(begc:endc) , nee_grc(begg:endg) , &

c2l_scale_type= unity, l2g_scale_type=unity)

Performance Optimization
● Allocating dynamic memory is slower on GPU than

CPU.

● Highest priority optimization is slight refactoring to
replace local arrays with scalars

○ If can’t, then allocate based on relevant filter
and not entire clump.

○ Has greatly increased performance in routines
done so far –many more to go.

● Next steps:

○ Enable compiler optimizations such as in-
lining, unrolling, etc.. (-OX flags crash)

○ Increase parallelism for routines that are most
compute intensive (e.g., history buffer is
parallelized across fields as well as gridcells)

○ Task parallelism and better data locality for
routines that aren’t compute heavy but with
hundreds of global memory accesses.

○ Fine tuning of OpenACC parameters: gangs,
registers, etc..

real(r8) :: diffus (bounds%begc:bounds%endc,1:nlevdecomp+1)
real(r8) :: adv_flux(bounds%begc:bounds%endc,1:nlevdecomp+1)
real(r8) :: a_tri(bounds%begc:bounds%endc,0:nlevdecomp+1)
real(r8) :: b_tri(bounds%begc:bounds%endc,0:nlevdecomp+1)
real(r8) :: c_tri(bounds%begc:bounds%endc,0:nlevdecomp+1)
real(r8) :: r_tri(bounds%begc:bounds%endc,0:nlevdecomp+1)
real(r8) :: d_p1_zp1(bounds%begc:bounds%endc,1:nlevdecomp+1)
real(r8) :: d_m1_zm1(bounds%begc:bounds%endc,1:nlevdecomp+1)
real(r8) :: f_p1(bounds%begc:bounds%endc,1:nlevdecomp+1)
real(r8) :: f_m1(bounds%begc:bounds%endc,1:nlevdecomp+1)
real(r8) :: pe_p1(bounds%begc:bounds%endc,1:nlevdecomp+1)
real(r8) :: pe_m1(bounds%begc:bounds%endc,1:nlevdecomp+1)
real(r8) :: dz_node(1:nlevdecomp+1)
real(r8) :: conc_trcr(bounds%begc:bounds%endc,0:nlevdecomp+1)

After:
real(r8) :: diffus_j, diffus_jm1, diffus_jp1
real(r8) :: adv_flux_j,adv_flux_jm1, adv_flux_jp
real(r8) :: a_tri(num_soilc,0:nlevdecomp+1)
real(r8) :: b_tri(num_soilc,0:nlevdecomp+1)
real(r8) :: c_tri(num_soilc,0:nlevdecomp+1)
real(r8) :: r_tri(num_soilc,0:nlevdecomp+1)
real(r8) :: d_p1_zp1
real(r8) :: d_m1_zm1
real(r8) :: pe_p1
real(r8) :: pe_m1
real(r8) :: dz_node
real(r8) :: conc_trcr(num_soilc,0:nlevdecomp+1) !

Underway now:
• 40,000 gridcell (subset) simulations on Summit using production datasets to

evaluate input data staging
• Continued OpenACC optimization at subroutine level

