Using stable carbon isotopes to constrain terrestrial biosphere water use efficiency.

Dr. LISA WELP Earth, Atmospheric, and Planetary Sciences Purdue University Twitter @WelpLisa

E³SM Coupled Biogeochemistry Group Webinar May 26, 2020 My interdisciplinary research centers on vegetation-water-climate interactions.

Key knowledge and data gaps remain for modeling the influence of CO₂ on the terrestrial carbon sink.

Today I'll discuss 2 of these in the context of carbon isotopes:

1) Stomatal conductance

2) Allocation of photosynthesis

Pugh et al., Journal of Plant Physiology, 203, 3–15, doi:10.1016/j.jplph.2016.05.001, 2016.

Leaf stomata regulate CO_2 , H_2O , and heat exchange with the atmosphere.

Berry et al. (2010) Current Opinion in Plant Biology

Respond to light intensity,
drought stress (evaporative demand and soil moisture),
atmospheric CO₂ concentrations,
nutrient status and species.

Very sensitive to climate change!

Major source of uncertainty in predicting future climate.

Photosynthesis may have increased by ~30% over the 20^{th} century, with little extra use of water, driven by increased CO₂.

Gross Primary Production (GPP) or net photosynthesis

Water Use Efficiency (WUE) = photosynthesis (g C) / transpiration (g H₂O)

Cheng et al., Nature Communications, 2017. (Figure) Campbell et al., Nature, 544(7648), 2017. (31% increase in GPP)

Plant WUE has important consequences for the global hydrologic cycle as well as the carbon cycle.

How does terrestrial ecosystem WUE change with CO₂ and drought?

Motivating questions:

How will evapotranspiration and precipitation change with climate change?

How do carbon-water feedbacks influence net carbon sinks?

Isotopes are the same element, but different mass because of extra neutrons.

 $^{13}CO_2$ constitutes only 1.1% of the CO₂ in the atmosphere

Light isotope details

¹⁸O = 0.204%

<u>Natural abundance</u>	Measurement techniques	Delta notation
¹ H = 99.985% ² H (or D) = 0.015%	Physical separation of masses: Isotope ratio mass spectrometry	$R = \frac{\text{heavy}}{\text{light}}$
³ H = not stable	Optical absorption of different	$\delta = \left(\frac{R_{smp}}{R_{std}} - 1\right) \times 1000$
¹² C = 98.89 % ¹³ C = 1.11%	New laser instruments	Expressed in per mil (‰)
¹⁴ C = not stable		
¹⁶ O = 99.759% ¹⁷ O = 0.037%	H ₂ O 'types': ¹ H ₂ ¹⁶ O, ¹ H ₂ ¹⁸ O, ¹ H ² H ¹⁶ O	
	CO ₂ 'types': ¹² C ¹⁶ O ₂ , ¹³ C ¹⁶ O ₂ , ¹² C ¹⁸ O ¹⁶ O	

Carbon isotopes of atmospheric CO_2 and plant tissue can be used as an estimate of water use efficiency because they are sensitive to the stomatal opening size and C_i/C_a .

Lighter CO₂ reacts faster with Rubisco.

The atmospheric ${}^{13}C/{}^{12}C$ ratio is higher than the plant ${}^{13}C/{}^{12}C$ ratio

Photosynthesis favors ${}^{12}CO_2$ over ${}^{13}CO_2$ and the magnitude of the difference depends on C_i/C_a .

Photosynthetic ¹³C discrimination (Δ^{13} C) in C₃ plants depends on:

$$\begin{split} \Delta^{13}C \approx \delta_{plant} - \delta_{atm} \approx a + (b'-a) \frac{C_i}{C_a} \\ \uparrow \\ \text{Diffusion} & \text{Enzyme} & \text{Ratio of} \\ \text{of } \text{CO}_2 & \text{fractionation} & \text{intercellular } \text{CO}_2 \text{ to} \\ \text{through} & \text{against } ^{13}\text{C} & \text{atmospheric } \text{CO}_2 \\ \text{air} & \text{concentration} \end{split}$$

Lighter CO₂ reacts faster with Rubisco.

Farquhar et al., 1989

 δ^{13} C measurements of plant tissue and the atmosphere can be used to estimate intrinsic water use efficiency.

$$\Delta^{13}C \approx \delta_{plant} - \delta_{atm} \approx a + (b' - a) \frac{C_i}{C_a}$$

Intrinsic water use efficiency (iWUE) can be calculated from C_i/C_a :

 $iWUE = A/g_{s,H2O} = C_a(1 - C_i/C_a)/1.6$

Physiological response of WUE or the part that is not controlled by VPD demand.

$$A = 1.6 * g_{s,H2O}(C_a - C_i)$$

Two stories today: Examples from atmospheric residuals and plant tissues

Atmospheric investigation: Trends in stomata conductance due to increased atmospheric CO_2 concentrations. Long-term global and regional changes in terrestrial ecosystem intrinsic WUE from the atmospheric δ^{13} C of CO₂ record.

Plant tissue investigation: Role of carbon allocation in interpreting plant tissue δ^{13} C. Seasonal and intra-annual variability in ¹³C of plant tissues.

How has the terrestrial biosphere responded to increasing atmospheric CO_2 and climate change over the past few decades?

Keeling, R.F., H.D. Graven, L.R. Welp, L. Resplandy, J. Bi, S.C. Piper, Y. Sun, A. Bollenbacher, and H.A.J. Meijer (2017) **Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis**, *Proceedings of the National Academy of Sciences*, 114(39), 10361-10366, doi:10.1073/pnas.1619240114.

Stomatal aperture is sensitive to atmospheric CO_2 concentration.

Reducing the size of leaf stomata may be advantageous for a plant in a water limited environment.

It can still get enough CO₂ while conserving water loss, thereby improving intrinsic water use efficiency.

However, temperature stress may increase.

When plants remove CO_2 from the atmosphere, the $\delta^{13}C$ of the residual air increases, sensitive to average plant iWUE.

The atmospheric δ^{13} C is the inverse of the signal in plant tissues.

Seasonality is dominated by the biosphere activity. Long-term trends are dominated by fossil fuel emissions. Long term records of atmospheric $CO_2 \delta^{13}C$ change from the Scripps CO_2 flask network since 1978 and ice core records before that.

Two ways to interpret the δ^{13} C of CO₂ record

Keeling et al., Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis, P. Natl. Acad. Sci. USA, 8, 201619240, doi:10.3402/tellusb.v39i1-2.15325, 2017.

18

By matching the observed δ^{13} C curve to models assuming no or variable ¹³C discrimination with time, we can tell how plant iWUE changed.

The better fit to observations by the blue curves show that some increase in Δ^{13} C discrimination has occurred over this time.

Changes in Δ^{13} C can be related to changes in C_i/C_a if the influence of mesophyll conductance and photorespiration is removed, which in turn constrains the stomatal conductance and iWUE influencing both CO₂ gain and water loss.

$$\Delta = a + (b - a)(C_i/C_a) - (b - a_m)(A/C_a)/g_i - f\Gamma^*/C_a,$$

iWUE = $A/g_s = C_a(1 - C_i/C_a)/1.6,$

19

Using the seasonal co-variation of CO₂ and δ^{13} C to calculate the ¹³C discrimination of the terrestrial biosphere.

Seasonality of CO₂ and δ^{13} C is dominated by the terrestrial biosphere activity.

Fossil fuel emissions from CDIAC, CCSM ocean fluxes, and CASA isotopic disequilibrium fluxes were transported in TM3 and sampled at the observing location.

They have almost no effect on $\rm CO_2$ or $\delta^{13}\rm C$ seasonality, but they do become important when quantifying small trends in $\Delta^{13}\rm C$.

Calculate δ^{13} C of photosynthetic uptake (δ_{source}) and apparent ¹³C discrimination by the biosphere (Δ_{ap})

Apparent ¹³C discrimination $\Delta_{ap} = \frac{\delta_{source} - \delta_{bk}}{1 + \delta_{bk}}$

Approximates the Land ¹³C discrimination

$$\Delta_{al} = a + (b' - a) \frac{C_i}{C_a}$$

Miller and Tans (2003) approach

Calculate the slope fit for each year to determine how ¹³C discrimination changes over time.

Compare calculations using SIO data to independent NOAA ESRL data.

Mean $\Delta_{apparent}$ of ~ 19‰ is consistent with dominant C₃ photosynthetic pathway.

Year-to-year variability may be caused by regional droughts or differences in air mass influences and different data screening approaches.

Trend at BRW = $+0.17 \pm 0.27$ ‰ decade⁻¹.

To attribute trends to C_3 ecosystem changes, corrections are needed for fossil fuel emission influence, ocean gas exchange, isotopic disequilibrium, and maize (C_4) production.

 $d\Delta/dt = d\Delta_{apparent}/dt + corr_{fossil fuel} + corr_{ocean} + corr_{maize}$

Image: http://www.esrl.noaa.gov/gmd/outreach/isotopes/c13tellsus.html

Both atmospheric $\delta^{\rm 13}{\rm C}$ methods point to increasing $^{\rm 13}{\rm C}$ discrimination.

Seasonal cycle (1985-2017)

Sensitive to temperate to Arctic $0.25 \pm 0.35\%$ decade⁻¹

Long-term trend (1975-2005) Sensitive to the tropics $0.22 \pm 0.11\%$ decade⁻¹

What does this mean for C_i/C_a and iWUE trends?

25

Convert ¹³C discrimination to C_i/C_a and iWUE

Linear approximation:

$$\Delta = a + (b' - a) \frac{C_i}{C_a}$$

More precise version: Eqns from Seibt et al. 2008

$$\Delta = a + (b - a) \frac{C_i}{C_a} + (b - a_m) \frac{A}{g_m C_a} - f \frac{\Gamma_*}{C_a}$$
Solve f
Intrinsi
Mesophyll
conductance term
Photorespiration term

Solve for C_i/C_a ... Intrinsic WUE = A/g_s = $C_a(1 - C_i/C_a)/1.6$

 C_a increased by ~55 ppm from 1985 to 2017.

The mesophyll and photorespiration terms contribute 0.010 \pm 0.004‰ ppm⁻¹. ²⁶

C_i/C_a trend ~constant and increase in iWUE as atmospheric CO_2 increased.

Seasonal cycle (1985-2017)

Sensitive to temperate to Arctic *iWUE increased* $14 \pm 18\%$ *CO*₂ *rose by* 18%

Long-term trend (1975-2005) Sensitive to the tropics *iWUE increased by* $11 \pm 6\%$ CO_2 rose by 14%

Ecosystems from the tropics to the temperate mid-latitudes and the Arctic are all increasing iWUE with increased atmospheric CO_2 .

The atmospheric results imply constant C_i/C_a values and a 20% increase in iWUE over the 20th century in response to increasing CO₂, consistent with trends in tree-ring records.

$$\Delta = a + (b - a)(C_i/C_a) - (b - a_m)(A/C_a)/g_i - f\Gamma^*/C_a.$$

 $iWUE = A/g_s = C_a(1 - C_i/C_a)/1.6$

- Photosynthetic ¹³C discrimination can be measured on individual tree rings to reconstruct changes over time.
- Recent efforts using northern hemisphere tree species also observe $^{13}\mathrm{C}$ trends consistent with constant $\mathrm{C_i/C_a}$ (Frank et al., 2015 , Keller et al, 2017).
- Consistent with stomatal optimization theory which predicts a constant C_i/C_a and a 1% increase in C_a will result in a 1% increase in iWUE (Medlyn et al., 2011). Assumes that plants adjust their stomatal conductance to maximize overall carbon gain, also considering the metabolic costs of supplying water for transpiration.

As more carbon cycle models incorporate ¹³C, these records provide important validation.

LPX matches tree-ring ¹³C records more closely than CLM.

Tree ring records and atmospheric observations are converging on constant C_i/C_a trends as C_a increases.

Keller et al., 20th century changes in carbon isotopes and water-use efficiency: tree-ring-based evaluation of the CLM4.5 and LPX-Bern models, Biogeosciences, 14(10), 2641–2673, doi:10.1002/eap.1490, 2017.

While overall patterns are converging, different plant functional types and species differ in their iWUE responses.

Frank et al., 2015, Nature Climate Change

For example, conifer and broadleaf trees were found to have different δ^{13} C trends and iWUE (Frank et al., 2015).

Not accounting for age and development effects may lead to erroneous conclusions (Brienen et al., 2017).

Let's consider individual tree species now...

Trends and patterns in atmospheric δ^{13} C of CO₂ can tell us about regional to global responses to climate change

but we can also use δ^{13} C of plant tissues to study individual species gas exchange and iWUE.³¹ Leaf to canopy scale, Internal carbon allocation

Carbon allocation in trees influences the intrinsic WUE estimate.

Oh, Y., L.R. Welp, K. Yi, M.C. Benson, K.A. Novick, Q. Zhuang, and D. Lombardozzi (*submitting this week*) **Carbon allocation affects seasonal leaf carbon isotopic signatures and inferred water use efficiency of temperate deciduous trees**.

There are many different ways and scales to measure plant water use efficiency (WUE).

Spatial scale: Leaf Temporal: Instantaneous Methods: chamber, ¹³C/¹²C

Whole plant Daily-to-annual ¹²C Sap flux sensor (non-photosynthetic water loss) Ecosystem or field Daily-to-annual Eddy covariance (soil evaporation) WUE can be estimated using leaf gas exchange, ¹³C, and eddy covariance, but they give different results.

Leaf isotope-based estimates of WUE are higher than other estimates, indicating a key research direction to reconcile measures of WUE.

Medlyn et al., 2017

Study Site – Morgan Monroe State Forest (MMSF)

- MMSF is located 20 miles from Bloomington in Indiana, and is a secondary successional broadleaf forest
- Long term eddy covariance tower measures CO₂ and H₂O fluxes
- 75% of the basal area is comprised of Sugar Maple, Tulip Poplar, Sassafras, and Oak species

Brzostek et al., 2014; Roman et al., 2015

Maple

Leaves sampled over the growing season change δ^{13} C, start enriched and get lighter.

36

Spring leaf δ^{13} C can't be explained by photosynthetic discrimination, but rather stored carbon used for leaf flush.

Modeled leaf carbon to track changes in δ^{13} C of leaf as they transition from old carbon to new carbon sources.

NSC = non-structural carbohydrates (sugars and starches)

Early season remobilization of stored carbon enriched in ¹³C can explain the offset in iWUE estimates by different methods.

- Allocation of remobilized carbon can explain the differences in iWUE between methods.
- The "true" physiological iWUE values are probably lower than mid-day leaf gas exchange estimates.
- iWUE was higher in the 2012 drought, but the relative magnitudes vary by species and method.
- Note that this largely affects mean bias and and drought response; not necessarily trends in iWUE.

Summary

Atmospheric investigation: Trends in stomatal conductance due to increased atmospheric CO_2 concentrations. iWUE has increased in response to increasing atmospheric CO_2 , maintaining nearly constant C_i/C_a ratios. Globally, the terrestrial biosphere has become less constrained by water stress.

Plant tissue investigation: Role of carbon allocation in interpreting plant tissue δ^{13} C. The use of stored carbon early in the season can explain why ¹³C methods estimate higher iWUE than other methods in deciduous broadleaf trees. Care must be taken when using leaf (and tree-ring) δ^{13} C to validate the magnitude of iWUE in carbon cycle models, especially inter-annual variability. Increased intrinsic WUE influences the coupled carbon-water cycle through vegetation-climate feedbacks.

Zhu et al. including Welp (2017) Geophysical Research Letters

Increased intrinsic WUE could relax water stress in many plants (Choat et al., 2012).

Increased WUE may result in lower transpiration rates and precipitation thereby enhancing water stress in some regions (Zhu et al., 2017).

However, increased in leaf area and atmospheric evaporative demand may cancel these effects (Keller et al., 2017).

Carbon isotopes can be used to study stomatal response or intrinsic WUE.

_eaf: 0.01-0.1 m

Stomata: 10-5 m

Chloroplast: 10-6 m

to interpret leaf and tree-ring ¹³C and how iWUE influences global-scale carbon and water cycles. 42

Key knowledge and data gaps remain for modeling the influence of CO₂ on the terrestrial carbon sink.

Pugh et al., Journal of Plant Physiology, 203, 3–15, doi:10.1016/j.jplph.2016.05.001, 2016.