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Motivation

Evaluation of climate models needs to go beyond
the simple use of an individual variable (e.g.,
precipitation) to include relationships.

Challenges:

 Whatis the right approach to evaluate and
determine the appropriate observation-based
datasets for relationships?

« What are the observed relationships?

Three examples:

» Surface water balance over the Amazon Basin

» Snow-water equivalent over CONUS

« Morning soil moisture effect on afternoon
rainfall




1. Surface water balance over the Amazon River Basin

E3SM Ocean Barrier layer discrepancy around the Amazon

e Ocean-only run (top), with Amazon
discharge specified from

observations, has larger BLT bias
than the coupled run (bottom), with
(apparently biased) Amazon
discharge from the land model.

* |s this just an ocean model problem?

Or an issue with observations used in
the forcing?

Reeves Eyre, Van Roekel, Zeng, Brunke,
Golaz (2019)

Annual mean BLT bias:
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E3SM Precipitation and runoff Biases

Amazon precip:
Not enough
Correct phase

Amazon discharge:
Not enough
Wrong phase!
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Congo precip:
A bit too much
Correct phase

Congo discharge:
Way too much!

Exaggerated seasonal
cycle!

* Are these just atmosphere and land model problems? Or issues with the observations?



Terrestrial water budget:
P—E—-R=dS/dt

Our Approach:

. Test water budget closure for different combinations of
individual data sets over the Amazon River basin

. Use ocean salinity as an independent consistency check —

exploiting the large and relatively well understood freshwater
“plume” in the Atlantic.

Reeves Eyre et al. (to be submitted in March 2020)



Data

* Precipitation — 4 (GPCP, CMAP, ERA5, MERRA?2)
e Evaporation — 3 (ERA5, MERRA2, GLEAM)
* Atmospheric convergence — 2 (ERA5, MERRA2)
* Thisis an alternative to (P—E)
e Terrestrial water storage —3 (JPL, GFZ, CSR)
* Different retrievals using the same GRACE measurements
* River discharge — 1 (HyBAm)
* Also use Dai et al. (2009) method to upscale gauging station
to river mouth

Total number of closure “combinations”: 30](+3 ensemble means)

e Salinity — 3 (SMOS, SMAP, Aquarius)



How well do data sets agree?
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Three GRACE data agree with each
other well

Residuals vary by ~50% of discharge,
and ERAS P and E give smallest
residuals

Large difference in P-E between
ensemble mean and ERA5

P-E differences come from both P and E
(not shown)

Three salinity data sets have very
similar seasonal cycles (not shown)



Can we close the water budget?

Mean residual / % streamflow

Only a few combinations close the water budget
(within estimated uncertainty) — mostly with ERAS5

Ensemble means do not close the budget

The better closure for “Obidos” than “Amazon”
implies that the Dai et al. method may not give the
correct seasonal cycle
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Each point is one combination of data sets:
some are “highlighted”

Obidos gauge captures
runoff from about 78%
of the area of entire

Amazon basin.
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Using salinity as a consistency check

absolute anomaly
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Note — we expect negative correlations: more freshwater discharge means lower salinity
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Application: variability of the Amazon plume
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2. Snow-Water Equivalent over CONUS

Importance:

Snowpack is a major component in land-atmosphere interactions.

Challenge:

Global snow-water equivalent (SWE) observation-based data have
relatively poor quality: re-analysis, land data assimilation (GLDAS),
satellite passive microwave (e.g., AMSR-E), and merged products

Our Approach:

We spent three years to develop the UA daily 4 kmm SWE and snow
depth dataset over CONUS from Oct 1981- present (Broxton et al.
2016; Dawson et al. 2017; Zeng et al. 2018)

11



[UA Daily 4 km SWE and snow depth dataset}

Schneider
Meadows
a) Input data: SNOTEL site
« (USDA/CA DWR) SNOTEL SWE/snow depth sites, in Oregon

NWS COOP snow depth sites,
» PRISM daily 4 km precipitation and temperature data

b) Main ideas in data assimilation

» Point-area interpolation (Broxton et al. 2016; Editor’s
highlight)

* A new snhow density model to combine SWE and
snow depth measurements (Dawson et al. 2017)

c) Passed four rigorous tests:
* Point-point interpolation test ;
* Point-pixel interpolation test = s
» Evaluation using the JPL ASO airborne lidar data in CA and CO s @U?@"’aﬁﬁ?ﬂ@ﬂﬁh@@ﬁmw ~
« Evaluation using the independent snow cover data NWS Boston COOP Program

d) Passed independent test by another group

» Using NOAA airborne Gamma radiation SWE measurements 12



E. Cho, J. Jacobs, and C.
Vuyovich (Dec 2019) used 40-
year airborne Gamma radiation
SWE record to evaluate satellite
(SSMI/S), merged (GlobSnow),
and UA SWE products, and
concluded in Abstract:

“UA SWE has much better
agreement with gamma SWE in
all land cover types and snow
classes” and

“The results demonstrate the
reliability of the UA SWE
products...”
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Question: Do point measurements at SNOTEL represent the
snowpack decline across the whole western U.S.?

The trends of annual maximum snow

mass are very similar at government

sites and co-located 4 km grids:

* their median trends are -2.8 and -2.9
mm/year,

These results do not represent those
using all snowy grids of western U.S.
above 5000 ft (or 1500 m) in elevation:
* median trend is -0.5 mm/year

-120 -110 -100 -90 -80 -70
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o F“, March SWE trend
w B T (mm/yr)
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trend near the West Coast (with a different
color bar)
Challenge:
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on model’s performance?
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Obs

Models

Oct.-March mean temp. relation. R2 Oct.-Mar. accum precip. relation. R> Multi-linear relationship R?
SWE == aTT + apP + b

SWE =aT + b SWE =aP +b

50N
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(d) GFDL-CM4
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(d) GFDL-CM4

T
120W

01 02 03 04 05 06 07 08 09

OBS: SWE has a strong correlation with P (particularly over mountains), and has a weaker relation with T

E3SM: SWE has a weak correlation with P and has a stronger correlation with T

For OBS and models, using T and P yields much higher correlation than using T or P alone
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Temp. sensitivity indices

Precip. sensitivity indices
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Comparison of March SWE trends
from AMIP runs versus coupled runs
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3. Morning soil moisture effect on afternoon rainfall
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Figure 2. Relationship between the logarithm of precipitation accumulations (mm) from 1100-2300 CST and antecedent
standardized soil moisture anomalies from 0700-1100 CST over stations across the SGP domain for a) all APEs, b) low
dynamic regime APEs, c) medium regime APEs, and d) high regime APEs. Correlation coefficients (r) significant at p < 0.05
are marked with an asterisk, and n refers to the number of days.

Welty and Zeng (2018)
A THE UNIVERSITY UA News Release on 8/8/2018: Does rain follow the plow?
- OF ARIZONA DOE Office of Science web site: University research highlight

SM-P Correlations
under Different

Dynamic Regimes
(from NASA MERRA2)

* Negative (positive)
correlation between
seasonal standardized
anomaly of morning SM
with afternoon P
accumulation under low
(high) regime

 When all afternoon P
days taken as a whole, no
statistically significant
relationship between SM
and P

ARM

CLIMATE RESEARCH FACILITY
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Table 1
Relationship Between Variables and Accumulated Precipitation Across Regimes

P vs. All Low Medium High
. Morning SM Anomaly —0.02 —0.42* —0.06 0.36*
Physical Pathways Morning SM 0.11 —0.21 0.09 0.34*
Soil T 0.21% 0.38* 0.25% —0.01
Q 0.27* 0.39* 0.23* 0.08
RH 0.04 —0.02 0.06 0.02
T 0.20* 0.33* 0.17* 0.04
* Under low regime: Crp e 0o o1 ood 02
e positive correlations for HI, _0'04 _0'23* _0’10 0'16
. ow 0 S 5 .
soil T, 2m T, 2m Q, CAPE 0.21% 0.30* 0.16 0.07
CAPE, and PBLHd/LCLd PBLHd/LCLd 0.14* 0.31* 0.09 —0.03
* negative correlation for EF 0.08 —0.07 —0.02 0.36%

SM

Note. Correlation coefficients between the logarithm of precipitation accumula-
tions (mm) from 1100-2300 CST and various quantities for APEs for all, low,
medium, and high dynamic regimes. The meaning of variables is provided in
* positive correlation for the text. CAPE, CTP, and Hl,y,, are computed from the ~0600 CST sounding,

EF, SM and the PBLHd and LCLd are calculated as the respective differences between
~0600 and ~1200 CST soundings (to capture the diurnal growth of each). Other
variables are averaged from 0700-1100 CST. Correlation coefficients significant
(p < 0.05) are marked with an asterisk.

* Under high regime:

*CTP: Convective Triggering Potential
@I *HI,,,,: Low-level Humidity Index 21



All regimes

ﬁor each regime, compute afternoon rainfall \ o 1

frequency over wetter soil minus that over drier 40N 4

soil: 20N -

* Positive differences: occurrence more likely 0
over wetter soils

* Negative differences: occurrence more likely

\ over drier soils / aon |
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Afternoon rainfall tends to occur over wetter
soils under low (L) moisture convergence
conditions.
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Afternoon rainfall tends to occur over drier soils o & mE e b o

under high (H) moisture convergence conditions. 4w

40N A

Results over ARM SGP are not representative of
global results.
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Welty et al. (to be submitted in March 2020)



Investigating other variable relationships with afternoon rainfall

Conditional probability difference of
afternoon rainfall over positive and
negative anomalies of each indicated
variable over CONUS for all regime days.

Afternoon rainfall tends to occur over
warmer surface (using surface or air T)
and primarily over higher specific
humidity

Results depend on location for soil
moisture, evaporative fraction, and

relative humidity

We are currently analyzing global model

representation of afternoon rainfall
processes (e.g., E3SM)
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Conclusions

1. Surface water balance over the Amazon Basin
* Only a few combinations of data sets allow water budget closure: ensemble mean P and E do not
* Using scaled Obidos discharge to represent Amazon discharge appears to give correct long term
mean but incorrect seasonal cycle
* Using water budget estimates of discharge should be considered for oceanographic studies of the
tropical Atlantic using climate models (including E3SM)

2. Snow-water equivalent (SWE) over CONUS
* Developed a high-quality daily 4km SWE data over CONUS
 Observed SWE shows more sensitivity to P (particularly over mountains) than T
* Models (including E3SM) show more sensitivity to T than P, which has implications on future SWE
projection
* Models miss greater sensitivity to T and P over coastal mountains.

3. Morning soil moisture effect on afternoon rainfall
e Afternoon rainfall in summer over Northern Hemisphere tends to occur over wetter soils under
low moisture convergence conditions.
* It tends to occur over drier soils under high moisture convergence conditions.
* It tends to occur over warmer surface (using surface or air T)



