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• Uncertainty from Multi-model 
ensembles

• Large spread in outputs
• Many quantities of interest
• Little formal uncertainty 

quantification (UQ)
– Expensive model evaluation
– High dimensionality

UQ challenges in E3SM and SciDAC:
• What processes drive uncertainty?
• What accounts for the key 

differences among models?
• Can model calibration using 

observations (e.g. satellite data) 
reduce uncertainty?

Overview and motivation:  CBGC models

Friedlingstein et al (2014)

Burrows et al (in review)
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Overview and motivation:  Land BGC

• ELM is an increasingly 
complex model with 
many processes

• Large ensembles are 
needed for UQ 

• Despite relatively small 
land contribution to 
computation, spinup
limits ensemble size.

• Surrogate models can 
increase the efficiency of 
sensitivity analysis and 
calibration

Biogeochemistry
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SciDAC: Optimization of Sensor Networks for 
Improving Climate Model Predictions (OSCM)

• Formalizing MODEX: A key DOE 
initiative for iterative feedback 
between models, experiments and 
observations
– Develop UQ algorithms to 

characterize uncertainty and  
maximize uncertainty reduction 
from new observations

– Apply to the E3SM land model for 
existing and proposed new 
observation networks

• Key question:  What is the ideal 
placement of observation systems to 
represent spatial and temporal 
variability in a signal of interest?

Model&simula,on&

Data&collec,on&
Model&evalua,on&

Model&development&

Sampling&strategy&

A “MODEX” loop
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Model infrastructure to enable UQ
• E3SM single gridcell

– Default v1 (FLUXNET sites)
– FATES (Boreal Alaska site)
– Using mpi4py as part of Offline 

Land Model Testbed (OLMT) to 
manage ensembles and post-
process

• Simplified ELM
– Carbon cycle only
– 47 ELM parameters
– Photosynthesis submodel –

ACM or ELM NN fit
– 100x faster than ELM for 

regional UQ testing
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Uncertainty Propagation 
… enabled by Surrogate Models

• Forward predictions:
• surrogate models, 
• sensitivity analysis, 
• parametric uncertainty

Comp. model

Input parameters Output prediction

Work with the model as a black-box (non-intrusive): 
create an ensemble of simulations with varying/perturbing   

Never analyze the ensemble directly: 
build a surrogate first
… otherwise called proxy, metamodel, 
emulator, response surface, supervised ML
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Global Sensitivity Analysis (GSA)
enables parameter selection

… otherwise called Sobol indices, variance-based decomposition
Attribute fractions of output variance to input parameters

• i.e., how much output variance 
would reduce if a given parameter 
is fixed to its nominal value

• also generalizes to joint sensitivities: 
joint parameter impact to a given QoI

Param 1 Param 2 P 3 Param 4 Param 5
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The impact of parametric uncertainties on biogeochemistry 
in the E3SM v1 land model

Out of 68 model parameters analyzed, 
fewer than 20 have a significant influence 
on land model quantities of interest.  
These parameter sensitivities depend on 
climate variables, and are largely 
consistent among sites within a biome.  

Critical soil water potential

Stomatal conductance slope

Stomatal conductance 
intercept

Specific leaf area (canopy top)

Leaf carbon:nitrogen ratio

Fraction of leaf N in RuBisCO

Fine root carbon:nitrogen ratio

Fine root:leaf allocation ratio

Critical day length for senescence

Fraction of C storage allocated

Bulk dentrification rate

Base rate for plant respiration

T sensitivity for plant respiration

Ricciuto, D., Sargsyan, K., & Thornton, P. (2018). The impact of parametric 
uncertainties on biogeochemistry in the E3SM land model. Journal of Advances in 
Modeling Earth Systems, 10. https://doi.org/10.1002/2017MS000962.
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Boreal forest run over 300 years, influence on LAI

Leaf Area Index
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GSA across many QoIs

Needleleaf Evergreen Boreal PFT in FATES
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Generic Forward UQ Workflow

• git clone git@github.com:E3SM-Project/Uncertainty-Quantification.git

• Python scripts utilizing UQTk Toolkit (www.sandia.gov/uqtoolkit)
a lightweight C/C++ UQ toolkit from SNL-CA, 
part of tools within FASTMath SciDAC Institute

• Several demos available (uncertainty propagation, surrogate, sensitivity)
• Plotting scripts for quick automated analysis
• See confluence

• Bottom line: 
matrices of ensemble
inputs and outputs 
and turnkey
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Various surrogate types explored
• Polynomial chaos (PC):

• Misnomer: nothing to do with chaos as in dynamical systems
• Essentially a polynomial fit/regression to the black-box model
• Extremely convenient for uncertainty propagation, 

moment estimation, global sensitivity analysis
• e.g., PC surrogate allows extraction of sensitivity indices ‘for free’

• Can deal with highly non-linear models, 
but certain level of smoothness is assumed

• Low-rank tensor representations:
• Nature is low-rank: only subset of inputs act together at the same time
• More flexible than PC, but harder to construct

• Neural networks:
• Can deal with non-smooth behaviors
• Cons: much harder to train, even harder to interpret

UQ

ML
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• Exploit model structure to reveal sparse 
low-rank interactions between model 
components and associated parameters

• Surrogate model accuracy 4-8%; 
improvement of by a factor of 2 over 
classical surrogate model approaches

• Explore parametric functional tensor train 
representations to augment the low-rank models 
over the Land Model inputs with spatio-temporal 
dependencies (Joint work with FASTMath)

Total Effect Sobol Indices at US-Ha1

LEAFCN Sobol Index near US-Ha1 

Sparse and Low-Rank Surrogates
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Neural Network surrogates allow more flexibility
Daily Forcing

Stochastic Input

GPP

LAI

NPP

NEE�1

�2

�3

�47

. . .

. . .

. . .

...
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...
...

...
...

Daily Forcing

Stochastic Input

GPP

LAI

NPP

NEE

Day 1 Day 2 Day 3 Day N

. . .

Multilayer Perceptron (MLP)

Recurrent Neural Network (RNN)
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We have created specialized RNN architecture 
knowing the connections between processes

Daily Forcing

Stochastic Input

GPP

LAI

NPP

NEE

QoI Day 1 QoI Day 2

Daily Forcing

Stochastic Input

GPP

LAI

NPP

NEE

QoI Day 1 QoI Day 2

Vanilla long short-term memory 
(LSTM) network

Physics-informed LSTM
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Physics-informed RNN architecture 
captures daily dynamics well with a 

fraction of the cost
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Physics-informed RNN architecture 
captures daily dynamics well with a 

fraction of the cost
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Physics-informed RNN architecture 
captures daily dynamics well with a 

fraction of the cost
Price to pay? 

Compared to PC…
a) GSA is not ‘free’, and requires extensive sampling of the RNN surrogates.
* Not a big deal if the limiting factor is the ELM expense
b) Does not come with uncertainties 

17



ELM v1  GPP Biomass

• Large biases remain in many regions – can we solve 
using calibration?

• ELM regional calibration is too expensive
• Site-level calibration results not globally relevant
• Regional sELM simulations for UQ methods 

development:  2000 member ensemble, 47 parameter

Offline land model benchmarking 
and validation

Global net land carbon flux
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Surrogates with spatially and temporally 
varying outputs

• In this example, we have 42660 GPP 
outputs (over space and time) – building 
surrogates for all of these is cumbersome!

• 8 model parameters varied
• Outputs highly correlated in space and time
• Singular value decomposition can be 

applied to reduce the dimensionality of our 
output

• NN with 5 singular values trained in 4 
seconds – fewer samples and far less time 
than standard approach

• Not all NNs are created equally.  Key to NN 
selection is selection of hyperparameters.

• Only 20 training samples (model 
simulations) are necessary for good 
surrogate accuracy at most locations.
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Inverse modeling: tuning model parameters 
with observational data

Comp. model

Input parameters Output prediction

Meas. model

Observed data

• Forward predictions:
• surrogate models
• sensitivity analysis,
• parametric uncertainty

• Inverse modeling: 
• parameter tuning
• calibration
• data noise incorp.
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Generic Forward+Inverse UQ Workflow
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Bayesian approach is main tool for 
parameter calibration

• Bayesian inference allows incorporation of various sources of uncertainty
• Markov chain Monte Carlo (MCMC) for building posterior PDFs

– Ugly high-dimensional parameter PDFs, but advanced MCMC methods 
are available

• Requires many online evaluations of the model
– This is why surrogates are handy!

• Predictive uncertainty decomposition augmented with surrogate error 
and observational noise 

Param 1 Param 2 Param 4 Param 5 Surr. error Data noise

Prediction variance 
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Bayesian approach is main tool for 
parameter calibration

Param 1 Param 2 Param 4 Param 5 Surr. error Data noise

Prediction variance 

model structural error Elephant in the room:

Uncertainty decomposition of model prediction
needs to account for model error –

often the dominant component of the uncertainty!

Model error
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Representing and estimating model error is useful for
• Reliable computational predictions
• Model comparison, selection

• Scientific discovery and model improvement:
• “is it worth resolving details, or just parameterize empirically?”

• Optimal resource allocation: 
• “do I improve my model (e.g. high-res), or run more simulations?”

Ignoring model error leads to
• Biased parameter estimation
• Overconfident predictions

Data Model Data noise

Model error is crucial, and often the dominant, 
component of predictive uncertainty
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Param unc. Surr. error Data noisePrediction 
variance 

Model error=



Calibration with Embedded
Model Structural Error

• Model structural error embedding approach [Sargsyan et. al., 2015, 2018] 
• Embedded, but not intrusive, i.e. black-box
• Physics-driven model correction
• Meaningful extrapolation to full set 

of QoI predictions
• Disambiguation between model error and 

data noise
• Core FASTMath capability

• Calibration of sELM with FLUXNET sites data
• Model error is the dominant uncertainty component
• Removes parameter biases and overfitting
• Points to submodels/parameters that are the culprit

KUKU

Forward modeling

Inverse modeling

Calibration

Preprocess

Prediction

fi(�)

Model

f̃i(�)

Surrogate

f̃i(�+ �(↵; ⇠))

Embedded
model

GSA/BF
Likelihood D = {gi}

Data

Posterior p(�,↵|D)

Prior p(�,↵)

h(�+ �(↵; ⇠))

Any QoI

Prediction p(h|D)
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Conventional calibration without model error

LHF = Latent Heat Flux

Calibration of ELM given FLUXNET observations

• Summer month peaks are not captured
• Posterior uncertainty negligible 
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Calibration with embedded model error

LHF = Latent Heat Flux

Calibration of ELM given FLUXNET observations

• Model error component dominates
• Captures model deficiency in summer months
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Calibration of ELM given FLUXNET observations

• Allows more accurate prediction of unobservable QoIs
• Can be piped to human component or atmosphere model 

as a boundary condition

Calibration with embedded model error

NPP = Net Primary Productivity
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Calibration of ELM given FLUXNET observations

• Allows prediction at other FLUXNET sites
• Assumption: model goes wrong in a similar way

Calibration with embedded model error

LHF = Latent Heat Flux
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Forward+Inverse UQ Workflow 
with Embedded Model Structural Error
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KUKU

Forward modeling

Inverse modeling

Calibration

Preprocess

Prediction

fi(�)

Model

f̃i(�)

Surrogate

f̃i(�+ �(↵; ⇠))

Embedded
model

GSA/BF
Likelihood D = {gi}

Data

Posterior p(�,↵|D)

Prior p(�,↵)

h(�+ �(↵; ⇠))

Any QoI

Prediction p(h|D)

Param unc. Surr. error Data noisePrediction 
variance 

Model error=
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•Given the uncertainty in our ensemble, where could
new observations be placed to optimally reduce
posteriorprediction uncertainty?

▪The computational grid shown is 41x61 and this includes the lightly
colored ocean and other water bodies.
▪In red we have a hypothetical region of interest involving 430 grid
points. A possible QoI (considered for illustration) is the aggregate
GPP in this region
▪The remaining land area in dark blue is where sELM output data is
available. Grid points at any location are plausible solutions when
performing experimental design owing to distant correlations.

Variance of the Gross primary produce (GPP) output, determined using 2000 ensemble
runs of the sELM model for 30 years.

Using surrogate models to inform 
observation locations
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Developing experimental design procedures to aid 
selection of  new site locations

The site locations obtained using greedy heuristics are
near optimal, and always perform better than random
selection of sites. The rug plot indicates the reduced
variance of the QoI after having factored in the new
hypothetical field measurements.

An experimental design study seeking five new sites for 
observations to reduce the uncertainty of aggregate GPP over the 
region of interest. Optimal points needn’t necessarily be spread out, 
can can cluster this solution seems to suggest. 



• Develop ELM “functional units” 
for process submodels

• Develop rapid evaluation 
capability using surrogates for:

– Key individual model outputs
– Each process submodel

• Hierarchical calibration
– ELM complexity is high
– Calibrate submodels using 

process-specific observations
– Calibrate ELM using integrative 

observations (e.g. NEE).
• Enable ecological forecasting

Phenology Allocation
/growth

Hydrology and soil 
physics 

Root function

Canopy 
processes

Litter and SOM
Decomposition

Nutrient 
cycling

Disturbance

CH4 
cycling

Single site Multiple sites Regional 

Next steps:  ELM UQ testbed
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Next steps:  Coupled UQ 
• Well-tuned/calibrated offline component 

models may perform poorly in coupled system
• Biases related to other components or 

coupling between them

• Large computational demand for individual 
experiments (including spinup)

• Additional outputs/dimensions – even larger 
ensembles needed.  

• Machine learning --> meaningful UQ?
• First step in OSCM :  SCM land-atmosphere

Offline  CNP-CTC LH bias

CBGC CNP-CTC LH bias
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Sensitivity analysis of SCM at GOAmazon site



Summary
• Forward UQ (uncertainty propagation): 

– Surrogate modeling is the key 
• For point/site simulations, we have well-developed workflows and willing to 

work with core, NGD and ecosystem projects.
• Many options: from Polynomial Chaos to Low-Rank Tensors to Physics-

Informed Recurrent Neural Networks
• More advanced, space-and/or-time surrogate modeling tools available
• With a combination of approaches, we can achieve high surrogate accuracy 

with small number of simulations.
– Global sensitivity analysis or variance decomposition for parameter dimension 

reduction
• Inverse UQ (parameter calibration):

– Bayesian model calibration with Markov chain Monte Carlo (MCMC) sampling
– Expense is alleviated by using an accurate surrogate: makes ELM calibration 

feasible
– Key advance: incorporating model structural error

• “MODEX” loop enabler: use attributable model prediction uncertainties to optimally 
locate new observation locations.

35


